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Abstract

Many ilinesses are associated with an alteration of the ineraystem homeostasis due
to any combination of factors, including exogenous baaténsult, endogenous breakdown
(e.g., development of a disease that results in immuno sapian), or an exogenous hit like
surgery that simultaneously alters immune responsiveaedgrovides access to bacteria,
or genetic disorder. We conjecture that, as a consequertbe ob-evolution of the immune
system of individuals with the ecology of pathogens, the éostasis of the immune system
requires the influx of pathogens. This allows the immuneesystio keep the ever present
pathogens under control and to react and adjust fast tosbafshfections. We construct
the simplest and most general system of rate equations wk&tribes the dynamics of five
compartments: healthy cells, altered cells, adaptive mnaté immune cells, and pathogens.
We study four regimes obtained with or without auto-immursmier and with or without
spontaneous proliferation of infected cells. For each effthur regimes, the phase space
is always characterized by four basic coexisting statipsatucturally stable states. Over
all regimes, we find that seven different states are nayuddkcribed by the model: (i)
strong healthy immune system, (ii) healthy organism withr@scent immune cells, (iii)
chronic infections, (iv) strong infections, (v) canceri) (eritically ill state and (vii) death.
Our description provides a natural framework for descghilre relationships and transitions
between these seven states. The analysis of stability ttmm&ldemonstrates that these seven
states depend on the balance between the robustness ofthmasystem and the influx of
pathogens. In particular, the healthy state A is found tetesmly under the influence of a
sufficiently large pathogen flux, which suggests that hdaltiot the absence of pathogens,
but rather a strong ability to find balance by counteractimg @athogen attack.
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1 Introduction and general background

Our goal is to develop a model of a biological organism, deffiase the collection of organs,
tissues, cells, molecules involved in the reaction of thaybtagainst damaging stressors, which
can take the form of (i) foreign biological material, (ii)daged, aging and/or aggressive inner
biological material and (iii) inorganic substances.

In a first broad-brush approach, the occurrence of illnegsuslly attributed to the following
factors, which often act in combination, sometimes syrsticlly.

1. Microorganisms (bacteries, viruses, fungi, parasité®s) the more recent extensions to
prions. This reflects the germ theory of diseases whichsstagt many diseases are caused
by microorganisms, and that microorganisms grow by reprtbdn at the expense of the
host, rather than diseases being spontaneously genevéteefer to the microbial origin
of diseases as one of the “exogenous” insults to which thg soslibjected.

2. Exogenous accumulative load of stressors in the envieomover-work, over-eating and
other excesses, psychological and emotional factors (afege, sadness, and so on) may
lead to fatigue and/or epigenetic expressions. Theseuastiessors impact the immune
system by destabilizing the feedback processes of theekitommunication paths known
to exist for the immune system: direct interaction with iigr or self (juxtacrine and au-
tocrine, respectively), short distances (paracrine, sagateurotransmitters), long distances
(endocrine, such as hormones) and long distances (henarsas vagus nerve).

3. Genetic variation (which include polymorphisms thaeeffoutcome, as well as “disor-
ders” or mutations, per se) caused by an unwelcomed mutasion cancers, by the ac-
cidental duplication of a chromosome, or the defective genkerited from the person’s
parents (hereditary disease). One should distinguishdsatwwo types of heriditary dis-
eases, those that are immuno-genetic diseases and imnaandeads. The former are the
expression of a major immune disfunction (as for examplaigsomy 21 or the Turner
syndrome) or of the deficiency of an enzyme essential tosifiel{ as in mucoviscidosies,
leucodystrophies, Wilson disease, and so on). These iaffiscare triggered within the
first few months of life and, for most of them, are life-thex@ng. The only treatment,
which is at its beginnings, consists in gene transfer viaral wiector. In contrast, ac-
quired immune disorders appear later, often during adiglt [These diseases frequently
are expressing defects affecting those parts coding thaimeraystem in the region HLA
of chromosome 6. At present, more that 45 auto-immune gleedave been linked to
the idiosynchratic characteristics of this region. We rrééethe genetic disorder origin of
diseases as “structural” and the present model offers eariédramework.

4. Senescence, engineered death (cells “wear out”).

Most changes that occur in response to stimuli are adaghw,is, helpful, allowing the
system to return back to its “attractor” state, often reférto as homeostasis. “Damaging” re-
sponses can result from host failure, overwhelming stisyubn a combination of the two, and
as a consequence, the host state may then not return to gfireabsttractor, perhaps a new (dif-
ferent) attractor/state. A normal system may encountevanaelming stimulus (e.g., sepsis).
Rarer occurrence in everyday'’s life are the transient amtgbailure of the immune system
which may lead to various degrees of inappropriate respdisaifferent hypersensitivities, in
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which the system responds inappropriately to harmless oomgs (allergies and intolerances),
(ii) autoimmunity, in which the immune system (mainly via @éntibodies) attacks its own tissues
(examples include systemic lupus erythematosus, rheusnatiritis, Hashimoto’s disease and
myasthenia gravis), (iii) immunodeficiency, in which pastgthe immune system fail to provide
an adequate response (an example of failure to respondasrcam which tumoral cells fail to
be recognized by the immune system as dangerous).

Our hypothesis developed below in the mathematical modesed on the recognition that
our body and immune system function in a form of homeostasignamical equilibrium whose
balance is continuously subjected to various external atetnal stresses. Genuine epidemic
diseases are relatively rare compared with illnesses #rabe attributed to the transition of the
homeostasis to an unbalanced state. Thus, given that teaabsf illness, health, is a form
of homeostasis, living organisms regulate their intermzirenment so as to maintain a stable
condition, by means of multiple dynamic equilibrium adjusnts controlled by inter-related
mechanisms of regulation. Main examples of homeostasisammmals include the regulation
of the amounts of water and minerals in the body by osmorégual&dappening in the kidneys,
the removal of metabolic waste by excretion performed byetrcy organs such as the kidneys
and lungs, the regulation of body temperature mainly donthbyskin, the regulation of blood
glucose level, mainly done by the liver and the insulin siectdy the pancreas. The mechanism
of homeostasis is mostly negative feedback, according tohndnsystem responds in such a way
as to reverse the direction of change. There are also pp&tdback systems, although they are
apparently less frequent (for example, uterine contrastauring parturition). But in contrast
with other homeostatic systems, the immune system is piplsiter described, as Perelson
(Perelson, 2002; Perelson and Weisbuch, 1997; Nelson aets&e, 2002) suggested, by the
fact that “The system never settles down to a steady-stataather, constantly changes with
local flare ups and storms, and with periods of relative quiese.” Our proposed model sees
these “flares and storms” as transient nonlinear adjussneriluctuating exogenous fluxes. We
delay to a sequel paper the analysis of the dynamics of otersysnder the influence of time
varying pathogen fluxes and under varying conditions. Heeeconstruct the model based on
general concepts, and classify all its equilibrium statash of them associated with a large class
of affections.

The paper is organized as follows. Section 2 articulatessadogenous versus exogenous
hypothesis, motivating the construction of the model pmeeset in section 3. Section 3.1 gives
the general mathematical framework in terms of nonlineaetc equations of the concentrations
of five different classes of cells (or biological compartisgn Section 3.2 specifies the kinetic
rates of each elementary interaction between these fivaespetcells leading to the general
form of the equations given in Section 3.3. Section 3.4 mlesitheir dimensionless reduced
form and section 3.5 presents our a priori expectations erbéhavior of this model. Section
4 (respectively 5) presents the properties of the equilibrstates found when infected cells are
not reproducing (respectively are reproducing) by theweselSection 6 concludes.

2 Hypothesis of endogenous versus exogenous origins of dis-
eases

Our immune system is subjected to incessant “attacks” bigemé of many different forms.
Here, we use the term “antigen” to refer to all substanceshvhre recognized as “non-self”
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endowed with an antigenic functionality, which includeshwaens, cell debris as well as toxins.
We carry aboutl0'* bacteria (of course many of them symbiotic) and probably yraore
viruses while our “own” cell number is only abol'? (ten trillions). In this context, ourimmune
system is constantly challenged, it is performing a comtigtifight” and adaptation to ensure
the integrity of the body. This can be viewed as a continuaws df “small” perturbations to
which our system has learned to adapt and to more or less atipéMazmanian et al., 2005;
Palmer et al., 2007). Most of the time, we are fine (in “goodthéa

A first scenario is that a normal system may encounter an @tlysirong insult leading to a
disease. This is the most generally accepted scenario. Asaanple, consider the extreme case
of a healthy human landing in the middle of a virulent chokep&demic in Africa or sustaining
severe injury in a car crash. We refer to this situation asexogenous” shock as the immune
system has suddenly to cope with a serious attack from thiesmwnding pathogens or physical
destructions.

Let us now consider a second hypothetical scenario, whichaNéendogenous.” With the
same typical fluxes of antigens, by stress or other destabdn external influences, or simply
by chance, sometimes our immune system “goes down a bit” arisbaome sick. This can occur
after some fatigue (overwork, bad eating, stress, pairghdggical effects, and so on). In such
a case, we cannot say that the illness is really due to a spedifrobial attack, the microbes
have been already present before; it is only that our sys@sngbne a bit down. Perhaps, a
succession of small random perturbations may add “coHgtantan unlucky run of random
occurrences and lead to sickness, as suggested by systeatsnabather complex systems
(Sornette and Helmstetter, 2003; Sornette et al., 2003%;280rnette, 2005). A given disease
may have several completely distinct origins, e.g., liverhosis which can be due to chronic
viral infection, alcoholism, eating excesses (NASH, Notzoholic Steatorrhoeic Hepatitis) or
auto-immunity. Often, the revealed sickness could alsoib&ed as a positive, i.e., robust
response (via inflammation, fever) to an invading organishe perception of being ill and the
need to rest may be adaptive and part of the overall dynamg@spbnse towards homeostasis. We
refer to this class of events in which the “immune system hasteesis” is perturbed away from
its domain of dynamical balance as an “endogenously” géeeriness. We do not address here
aging which also leads to failing immunity, as it is assaagatith a slow secular non-stationary
state whose effect we neglect for time scales shorter treaavbrage lifetime.

Based on these observations, our hypothesis is that a fierdahunderstanding of health,
of illnesses, and of the immune system, requires an approastd on the concept of a self-
organization of the immune system into a homeostasis urecantinuous flux of external
influences. We propose that many of our illnesses are infgignt part endogenous in nature
and that, in order to understand the response of our systeex®genous shocks, it is necessary
to understand its endogenous organization and the fact'@matogenously”, spontaneous fluctu-
ations in the dynamics of the immune system will occur asalre§many coherently interfering
factors, which may lead to any of the variety of pathologstates mentioned above. We propose
to go beyond the exogenous-environmental-structuralraigf illnesses summarized in the in-
troductory section, to encompass a complex system appioachich our immune system and
our whole body are regulated endogenously under the influeha continuous and intermittent
flux of perturbations. We conjecture that, if our regulatorynune system was not constantly
subjected to antigens, it would probably decay in part anddefense would go down as its
adaptive part would not be sustained, thus becoming vubteetta future bursts of pathogen
fluxes. Thus, we claim that the correct point of referenceoista consider a microbe-free or
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gene-defect-free body, but a homeostatic immune systehinnathomeostatic body, under the
impact of many fluxes, in particular fluxes of pathogens amgtrelsses taking many of the forms
mentioned above. An analogy may serve to illustrate ourtpaionsider the fate of our bones
and muscles, which need to be continuously under the infeieha suitable gravity field. Oth-
erwise, as demonstrated by astronauts under zero-G, Idssnef and muscle, cardiovascular
deconditioning, loss of red blood cells and plasma, possibmpromise of the immune system,
and finally, an inappropriate interpretation of otolithtgys signals all occur, with no appropriate
counter-measures yet known (Young, 1999).

We conjecture that the healthy individual has a homeostatitune system working at a ro-
bust level of stability, allowing it (1) to keep ever prespathogens under control and (2) to react
and adjust fast to new infections and other stresses. Undérfiixes, the complex regulatory
immune systems exhibit spontaneous fluctuations and shiadke form of illnesses, which are
themselves modulated by other factors. In other words, wpgse to view illnesses as emer-
gent properties of a complex interplay and balance betwseimmune system, the pathogens
and the other stress factors. We hypothesize that the entgogaperties of the normal sys-
tem (health) are different from those of the damaged systhsedse). Recent works on other
complex systems suggest that there are ways to find speafiodstics distinguishing between
endogenous and exogenous causes of crises and to derivesomscand possible remedies (Sor-
nette and Helmstetter, 2003; Sornette et al., 2003, 2004neBe, 2005). Our hypothesis of
an endogenous origin of illnesses resonates with the rgzepbsal that the adaptive immune
system may have evolved in vertebrates to recognize andgaeaha complex communities of
coevolved bacteria (McFall-Ngai, 2007): more than 200Qdréad species have been found to
be typically associated as partners inside us, comparddfexter than 100 species of human
bacterial pathogens that have been identified, with exjedsuhem that are rare and transient.

Our endo-exo hypothesis extends the “hygiene hypotheSisa¢han, 1989), which states
that modern medicine and sanitation may give rise to an usiitaulated and subsequently over-
active immune system that is responsible for high incidermé¢énmune-related ailments such as
allergy and autoimmune disease. Strachan (1989) thus gedgbat infections and unhygienic
contact might confer protection against the developmeatlefgic illnesses. Researchers in the
fields of epidemiology, clinical science, and immunologg aow exploring the role of overt vi-
ral and bacterial infections, the significance of environtakexposure to microbial compounds,
and the effect of both on underlying responses of the innatkaalaptive immunity (Schaub,
2006). Bollinger et al. (2007) has recently suggested thahiygiene hypothesis may explain
the increased rate of appendicitis (% incidence) in industrialized countries, in view of the
important immune-related function of the appendix. Ouraego hypothesis is also a distinct
generalization of Blaser and Kirschner (2007)’ s propadsat microbial persistent relationships
with human hosts represent a co-evolved series of nestekibeigy operating simultaneously at
multiple scales, to achieve an overall homeostasis. BsérKirschner (2007) emphasize the
maintenance of persistent host-adapted infections via(E&&utionary Stable Strategies, a sub-
set of Nash equilibria in game theory) played between dgifiepathogens between themselves
and the host that select for human-adapted microbes. Imastnive emphasize the co-evolution
of the immune system and the pathogens as a key element teeenstable and robust home-
ostasis.

The next section presents a simple model which embodies ttieas in the simplest possible
framework, that of kinetic reactions occurring between @ifeerent types of cells. As reviewed
by Louzoun (2007), mathematical models used in immunolagy their scope have changed



drastically in the past 10 years. With the advent of higlotdighput methods, genomic data, and
explosive computing power, immunological modeling nowaisigh-dimensional computational
models with many (hundreds or thousands of coupled ordiddfgrential equations (ODES))
or Monte Carlo simulations of molecular-based approachéste, in contrast, we develop a
five-dimensional system of the coupled normal cells-immaysem(s)-infected cells-pathogens,
which is in a sense a direct descendent of the classical mtu were based on simple ODEs,
difference equations, and cellular automata. While thesital models focused on the simpler
dynamics obtained between a very small number (typicalty swthree) of reagent types (e.g.
one type of receptor and one type of antigen or two T-cell patpns) (Louzoun, 2007), we
are more ambitious with the goal of framing an holistic apeio to the homeostasis of the
immune system(s) seen to be continuously interacting viterccompartments of the organism
and with pathogens. Our motto is well-captured by the quate fthe biocyberneticist Ludwig
von Bertalanffy: “Over-simplifications, progressivelyroected in subsequent development, are
the most potent or indeed the only means toward conceptusilenyaof nature.” We believe
that, notwithstanding the development of large-scale adgerpintensive models, there is still
and there will always be the need for simpler approaches. knowledge should be seen as
the collection of a hierarchy of descriptions, from the mgeeeral level with few variables and
fluxes, which like a cartoon provides an outline of the maait$rof the portrait, to the more
detailed microscopic approaches. In between, a seried@iediate levels form the bridges
between the two extreme modeling levels. Examples are fa@iall sciences. For instance, in
hydrodynamics, going from the micro- to the macro-scaleshave the micro-level of molecular
dynamics, the density functional approaches, the Masteateins, the Fokker-Planck equations
and finally the Navier-Stokes equation at the largest cegwamed scale. In the sequel, we start
from a simple but already rather rich framework, that wilbyide a guideline for subsequent
developments.

3 Mathematical formulation of the homeostasis dynamical po-
cesses associated with the immune system

3.1 General formulation

Our model can be viewed as a significant extension of simptedimensional models of viral
infection involving just normal cells with populatiak; and altered cells with population number
N,. One of the simplest representative of this family readsa&lq 2006)

dN

d—tl k —uN, — bN, Ny |
N.

% = DN1Ny — (u+ )Ny,

whereN; (resp.N,) is the number of normal (resp. infected) cells. The paranietepresents
the birth flux of normal celly is their normal death rate and the last teatV, N, in the first
equation is the rate of infection of normal cells when thegnedn contact with altered cells.
The destruction term for the populatia¥y is a creation term for the populatia¥,. The last
term—(u + v) Ny in the second equation with> 0 embodies the increased mortality rate of the
altered cells due to the virus. This model is sufficient taespnt simple infection diseases, with
a competant immune system in the presence of circulatingger
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However, there is much more to the immune system dynamicsjtisaiits response to exter-
nal pathogens. The immune system is a complex network afictieg components which also
evolve and change, accumulating history-dependent degistacs, properties, strengths and de-
ficiencies. Specifically, a useful model of the immune sysstould be able to include in a
single framework the four main classes of clinical affectipallergies, chronic infections, auto-
immune diseases and cancers. The model we discuss belowtgimesenting a coherent system
view of these different affections.

In order to formulate mathematically the various interasi between cells and pathogens,
we resort to the method of rate equations. The method of catat®ns is commonly employed
for characterizing the evolution of competing species. géeeral description of this approach
can be found, e.g., in the book by Hofbauer and Sigmund (2002he rate-equation approach,
one considers the average properties of a system and itstaenss, with the averaging assumed
to be done over the whole body. Therefore, the spatial strecf the latter can be arbitrary.

We consider five different agents constituting a living aigan. These are:

(i) normal healthy cells, whose number will be denoted\iy

(i) altered, or infected, cells, whose numbenis

(i) adaptive, or specific, immune cells, quantified by the nuniber
(iv) innate, or nonspecific, immune cells, with the numbgy

(v) pathogens, their number being.

The non-specific immune response includes polynucleus, gaib-inflammatory enzymes and
the complement system. The specific immune response irgthddymphocytes and their prod-
uct antibodies. Dividing the immune response into two congmts comes at the cost of aug-
menting the complexity of the system, but seems necessagpire how inflammation and
other non-specific responses might lead to ill-adapted en exegative effects leading to feed-
backs on the specific part of the immune system, possiblyeabtlgin of allergies, chronic
infections and auto-immune diseases. However, we use leefmrametrization which allows to
combine the two components of the immune system into a seftgetive one, thus decreasing
the complexity of the system to four coupled ODEs. Differatimig the specific interactions and
differences between the two immune systems will be the stibfeanother study.

These agents interact with each other, as will be specified.sd@heir dynamics can be
described similarly to those of other competing speciefiémodels of population evolution.
The general rate equations for the competing species read

dN;

dt
where: = 1,...,5, R; are rate functions, and; are external influxes. The rate functions are
dependent of the agent numbers, so tRat= R;(Ny, N2, N3, Ny, N5). Also, bothR; and F;
can depend on time The rate functions, in general, can be modeled in diffei@mhs, having
any kind of nonlinearity prescribed by the underlying psgeAs examples, we can mention the
nonlinear models of acute inflammation (Kumar et al., 2004e most often employed form for
the rate functions, which we shall also use, is

J

= R;N; + F; |
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which can be seen as a Taylor expansion in powers of the agembears. Generally, we could
include as well indirect interactions with higher-ordemhoearities. For instance, the third-
order termsA,;;, V; N, N, could be included. We do not consider such terms for two mresiso
First, such indirect interactions are usually less impurteéSecond, their influence, to a large
extent, has already been taken into account by a combinattgeveral second-order terms, such
asA;; N;N;. In the majority of cases, the above form of the rate equatisiguite sufficient for
catching the main features of the considered dynamics.

We are going to describe the leading processes and therias=b equations for the main
terms of the rate equations. These terms take into accoubasit interactions between the
constituents of a living organism. The discussed direerattions yield the nonlinear terms of
second order.

The structure of the kinetic equations must satisfy thefoihg general rules:

(i) Same-order nonlinearitiesNonlinear terms, characterizing interactions betwedls,ce
have to be of the same order of nonlinearity.

(i) Self-consistency of descriptioBquations include the major processes between cells. All
interaction parameters are to be treated on the same fodtmegmodulation of these parameters
by secondary processes must be either taken into accougtrvare or neglected everywhere.

(iii) Action-counteraction dichotom§zach procesd,; V; N;, representing the interaction be-
tween an-cell with aj-cell, must have its counterpart processN; V; (with A;; not necessarily
opposite ta4,;).

3.2 Specific determination of the kinetic rates
3.2.1 Kinetics of healthy cellsV,

(1) Healthy cells die with a natural decay rate and they ae ptoduced by a specialized system
of cells. The net (total) linear rate of death-birth of hegltells isA; and the corresponding
termisA;N;.

(2) The decay of healthy cells is described by the nonlineant-A,; N2

(3) The adaptive immune system occasionally attacks heedtlts, which provokes auto-immune
diseases. This is described by the termd;3 /N, V5.

(4) The innate immune system sometimes also attacks headtisy(e.g. through inflammation),
which is represented by the termA 4, N1 N,.

(5) Healthy cells are infected by pathogens, a process diyehe term— A5 N, V5.

3.2.2 Kinetics of infected (or anomalous) cellsv;

(1) Infected cells die with a natural raté,, hence the decay term A, N, with A, > 0. For

Ay > 0, i.e., such that the term A, IV, corresponds to a net death quotient, infected cells cannot
significantly duplicate themselves.

(1bis) It is also interesting to consider, the case wherected cells multiply with a net positive
growth rate| A,| corresponding to choosind, < 0. As the analysis will show, this will allow us

to obtain states that can be interpreted as cancer afflgtibar instance, chronic inflammation
(as in the case of stomach lining) can lead to cancer (Hedictgl pylori infection can lead to
stomach ulcers short term and stomach cancer long term)I3&/@ise the terminology “cancer”



loosely to refer to situations in which the multiplicatioiinfected cells during chronic infections
occurs as if it was a cancer according to a dynamic procesksimthe cellular tumor growth.
(2) The decay process can include a nonlinear contributitmtive term— Ay, N2 with Ay, > 0.
(3) Infected cells are killed by the adaptive immune systims the term- A,3 Ny Ns.

(4) They are also killed by the innate immune system, so time ted,, N> V,.

(5) The natural decay rate of infected cells can be increbgauteracting with pathogens, which
implies the term—A,5 Ny V5.

(6) The number of ill cells increases by the infection of kealcells by pathogens, which is
represented by the termdh; N5 /V;.

3.2.3 Kinetics of the immune system

The immune system of vertebrates can be divided into theteno@amponent (macrophages,
neutrophils, and many types of proteins involved in inflartioraresponses) and the adaptive
immune system (antibodies and lymphocytes B and T). Thesetwponents interact with each
other, cooperating and regulating each other. Hormonagfand the metabolism of fatty acids
(precursors of prostaglandins with opposite effects) plag an important role in the regulation
of pro- or anti-inflamatory signals. We thus specify the dyies of the two immune system
components as follows.

Recent research show that that ‘danger signals’, such as tband during viral infections,
can be recognized by T and B cells of the adaptive immunemsy@ttarsliand et al., 2005a,b). It
was generally considered that such sensing of ‘dangerlsigmas limited to cells of the innate
immune system. The fact that T cells have evolved to recegdanger signals’ opens a wide
spectrum of possibilities including novel mechanisms fa& thaintenance of immune memory,
the development of autoimmunity and general T cell homeastaWe take into account this
phenomenon in our description of the activation of the imencells.

Kinetics of the adaptive immune systemV;

(1) Immune cells in the adaptive immune system die by apaptatich is described by the term
—A3N3.

(2) For generality, the nonlinear decay, with the terms; N2 is included, though it may be
subdominant.

(3) The activity of immune cells is supported by healthyselthose part, the marrow, reproduces
the immune cells; these processes are described by thedtgriy /V;.

(4) Adaptive immune cells are activated by infected cellsiclv gives the termi s, N3 IVs.

(5) The adaptive immune system can be inhibited by the inpeatisof the immune system, which
corresponds to the term A3, N3 N,. This process may be part of the control of the immune
response after the removal of the infection or of the traismain order to avoid an auto-immune
excess.

(6) Adaptive immune cells are activated by pathogens, imglthe termAs; N3 Vs.

Kinetics of the innate immune systemV,

(1) The natural decay is given by the terrl, V,.

(2) The decay can be increased by the nonlinear tertn, N2, which, though, may be quite
small.

(3) The proliferation of immune cells, supported by healteyls, is characterized by the term
A41N4N1.



(4) The activation by damaged cells gives the tetfgp/N, N,.

(5) The innate immune system can be activated by the adgmivef this system, yielding the
term A,3 N, Ns.

(6) Pathogens activate the innate immune system, hencerthelt;; NV, Vs.

3.2.4 Kinetics of pathogens (or allergens, chemical or ioséd particles) N5

(1) Pathogens have a finite lifetime, thus the existenceeofedim— A5 Ns.

(2) In general, the nonlinear death (or elimination) term;; N2 can also exist.

(3) When infected cells die by lysis catalyzed by the preseavfcpathogens, they release the
pathogens they contained, which is characterized by the tgp N5 /Vs.

(4) Pathogens are killed by the adaptive immune systemmgivie term— As3 N5 Ns.

(5) They are also killed or hindered by the innate immunesysteading to the term A5, N5 Vy.

(6) There exists a continuous supply of pathogens into th&wosm from the exterior, represented
by the influx F', which is, in general, time varying.

3.3 Kinetic equations

Summarizing the processes described above, we obtainltbwiftg system of kinetic equations

dN-
d—tl = ANy — Ay NY — Ai3Ny N3 — Ay Ny Ny — AjsNi N5 (1)
dNy 2
W = —A2N2 — A22N2 — A23N2N3 - A24N2N4 - A25N2N5 + A51N5N1 ) (2)
dN3 9
— = —AgN3 — Ass N3 + Az N3Ny + Az N3Ny — A3y NsNy + As3s N3Ns | (3)
dNy 2
W = —A4N4 — A44N4 + A41N4N1 + A42N4N2 + A43N4N3 + A45N4N5 ) (4)
dNs 2
W = —A5N5 — A55N5 _|‘ A52N5N2 - A53N5N3 - A54N5N4 + F . (5)

Remark: The two equations for the adaptive and innate immune coimgsuts are struc-
turally the same, except for one important feature, nantedydifference in the sign of their
mutual interactions.

e The term— A3, N3N, in the dynamics of% expresses (foAs, > 0) a repression of the
active immune cells induced by the innate system. This faekibf NV, on N5 occurs with
a delay whose deficiency may cause auto-immune diseases.

e In contrast, the term- A3 N, N3 in the dynamics o% expresses (foAd,; > 0) the acti-
vation of the innate system by the active immune cells. Thisssponds to a vulnerability
towards allergies. The reverse sigiz < 0 also occurs (not considered here) due to the
high specificity of the adaptive cell§; which, by reducing the infections, may inhibit the
activation of the innate immune system.
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However, since the actions of both adaptive and innate coemts on the other species
N7, Ny and N5 are structurally and qualitatively identical, the presenc absence of these dif-
ferent regulations are not expected to lead to significdferdnces in the obtained classification
of illnesses. One can expect that, at our present level afrigi®n of the dynamics of the
5 species, the two immune system components can be combiteed Bingle one as they act
gualitatively as a single effective system.

3.4 Reduction to dimensionless quantities

Since the cell numbers can be extremely large, it is conmébdework with normalized quanti-
ties, reduced to a normalization constantFor this purpose, we introduce the cell fractions

=L (i=1,2,3,4,5). (6)

It is also convenient to deal with dimensionless quantfbeslecay rates and interaction parame-
ters and to measure time in relative units. Let the latterdseted byr. Then the dimensionless
decay rates are given by

o; = AT (7)

and the dimensionless interaction parameters by
The dimensionless pathogen influx is given by
-
=—F. 9
Y= 9)

Using these notations, and measuring time in units, @fe come to the system of dimensionless
kinetic equations in the form

dl’i
wherez; are the fractiond {6) and the right-hand sides are
2
f1 =011 — a11T7] — 13013 — A14T1T4 — A15T1T5 , (11)
2
f2 = —QaT2 — G225 — A23T2T3 — U24T2T4 — A25T2T5 + A51T5T7 (12)
2
fs = —a3w3 — ag3T3 + a31T3T1 + A32T3T2 — A34T3T4 + A35T3T5 (13)
2
f1 = —quTy — Q4T + a1 T4T1 + Q12T4T2 + A43T4T3 + A45T4T5 (14)
2
f5 = —Q5T5 — A55T5 + A52T5T9 — A53T5L3 — A54T5T4 + @ . (15)

These are the main equations for the organism homeostasisall@nalyse. The behavior of the
dynamical systems of such a high dimensionality can posgessnontrivial features (Arneodo
et al., 1980; Hofbauer and Sigmund, 2002; Ginoux et al., 2005
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3.5 A priori consideration

This system is reminiscent of two preys-two predators systsee e.g. (Hsu et al., 2001; Xiang
and Song, 2006)). The healthy ceNs corresponds to “food” or to a first “prey” “hunted” by the
immune cells (in case of auto-immune disorder tendengy> 0, a1, > 0) and a fifth specie, the
pathogens. The infected cell§ corresponds to a second prey hunted also by the immune cells.
The two types of immune celly; and V, are the predators, which in addition interact directly
through repressive-promoting asymmetric interactionsteNhat the predation or cytotrophic
mechanism of the immune system is a priori beneficial for tigamwism, ensuring the renovation
of tissues by elimination of aging or damaged cells. Theiatumvel feature is the presence of
the fifth specie, the pathogens, which play a rather complieedhrole: it is like a predator of
the first prey/N,, while it is a catalyst of food intake for the second prey as well as for the
two predators. Previous studies of one prey-two predatotoétwo preys-two predators have
exhibited very rich phase diagrams. Having a fifth pathogenponent, we expect even more
complex dynamics, and our finding of a rather strong strat&tability presented below comes
as a surprise.

The dynamical model, defined by Egs$. (10)}(15), is a five-disienal dynamical system
with 29 parameters. It seems, at first glance, that such & lawgber of parameters, which
are not strictly defined, makes it impossible to extract@aable conclusions from such a com-
plex model. However, fortunately, the qualitative behawabdynamical systems often depends
mostly, not on the absolute values of the control paramedtetsather on their signs. As empha-
sized by Brown et al. (2003, 2004), dynamical systems mndelomplex biological systems
always have a large numbers of poorly known, or even unknpargmeters. Despite of this,
such systems can be used to make useful qualitative praasotiven with parameter indetermi-
nacy. This reflects the fact that models which have been raristl on the basis of good physical
guidelines enjoy the property that their qualitative bebiais weakly influenced by the change
of the parameter values within finite bounds (Brown et alg2@004).

In the language of the theory of dynamical systems (Scof@5RQhis property is known
as structural stability The analysis of our model (IL0)-(115) performed by varying tiontrol
parameters over wide ranges confirm the existence of stalctability. It turned out that the
dynamical system (10)-(15) is remarkably structurallpktaalways displaying four stable sta-
tionary states for all parameter values. However, the padnd properties of some of these four
states change, consistent with the existence of diffeli@etsses.

We now describe in detail the results obtained respectifeglyl, > 0 (infected cells tend
to die) andA4, < 0 (infected cells tend to proliferate). In each of these twsesawe also con-
sider what can be considered in some sense two oppositegggiespectively without and with
an auto-immune attack of immune cells on normal cells. &#tng coexistence and bound-
aries between different states characterize possibles frattm health to illness (allergies, chronic
infections, auto-immune diseases, cancer), criticaddis) and death.
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4 Existence and stability of stationary states with decayigill
cells (4, > 0)

4.1 Setting of the parameters

In general, the analysis of the stationary states and ttadilisy for a five-dimensional dynamical
system, such as given by Eqgs. (10)4(15), can only be accehgainumerically. In order to
simplify the representation, we assume the following fezduhat are justified by the medical
literature as the basis of our model. First, we take the sgnoptasis rates of both compartments
of the immune system, setting

= Q3 =04 . (16)

This parametetr can be arbitrary. Other cell rates will be taken with
06120422045:1. (17)

The nonlinear decay plays an important role only for heattdlis, since the term,; limits the
growth of the body, which, it;; was zero, would grow without bounds due to the positiye
Because of this, we fix

app=1. (18)

At the same time, the nonlinear decay of other cells can b&eckegl, since their linear decay
rates are already negative and thus should dominate. Sakee t

Ao = a33 = a44 = as5 = 0 . (19)
To be able to derive analytically at least some of the forsulge set, for simplicity,
A15 = A23 = G24 = Q25 = A51 = A32 = A34 =

= Q35 = Q42 = Q43 = Q45 = A52 = (53 = A4 = 1 . (20)

The two opposite cases presented below differ from eachr bthevhether or not the immune
system attacks healthy cells, causing autoimmune diseases

4.2 Immune cells cannot attack healthy cells

If the immune system attacks only the infected cells and #ithggens, but does not attack
healthy cells, then
13 = A3] = A14 = Q41 = 0. (21)

In this case, the right-hand sides of the dynamical sysiéink{écome

fi=o(1 =2 —25), fo=—wo(l+ 23+ 24 + x5) + 2175,
fa=a3(zg — a4 + 25 — ) , fi=z4(zo+ 25+ 25 — ) ,
fs=ax5(xe—x3—24— 1)+ ¢. (22)

For what follows, it is convenient to introduce the totaldiian of immune cells
Y=o3+ 24 . (23)
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In a remark after equationgl[1-5), we already alluded to #ut that the two immune system
components could be combined into a single one as they attagwaly as a single effective
system on the other specid§, N, and N5. Here, this holds quantitatively as there is an exact
cancellation of the presence of thersx, term in f3 by the corresponding-xsx4 term in f,
which together with the symmetry betweern andz, in the other equations, ensures that the
dependence on; andz, in all equations forlx, /dt, dzo/dt, dy/dt anddzxs/dt only appear via
their sum variable defined in[(2B). Of course, this exact cancellation ofihe, termin f; and

f4 and the symmetric role of; and x4 only occur due to the special symmetric choice of the
system parameters in Eq._{20). Only with such a symmetrytloaimmune system be treated
as a total part of the organism, without separating it in@itinate and adaptive components.
The difference between the latter arises if the parameatbesacterizing the parts of the immune
system, differ from each other. In the real life, these patans are probably slightly different,
thus breaking the symmetry between the components of theimarsystem. But, for the sake of
simplicity, we preserve for a while this symmetry, whictoals us to reduce the five-dimensional
dynamical system to a four-dimensional one.

The symmetric choice of the system parameters in [Ed. (26\alls, for the time being, to
make no distinctions between the parts of the immune systdém@n, considering the stationary
states which are classified below, we have the equivalentem€ases, whep* = =3, while
xy = 0, or wheny* = zj, butzi = 0. This follows directly from the consideration of the
corresponding five-dimensional dynamical system with foeces” given by[(2PR).

The stationary states are given by the solutions of the emsf; = 0, in which we assume
the pathogen flux to be constant. The stability of these states is investilagemeans of the
Lyapunov stability analysis (Scott, 2005). For this puggose calculate the Jacobian matrix
[J;;], with the elementd,; = 0f;/0x;, find its eigenvalues, and evaluate the latter at the corre-
sponding fixed points. All that machinery is rather cumbergpand we present only the results,
omitting intermediate calculations. We find four stabldistaary states4, B, C' and D).

Figure 1 presents the phase diagram, or domain of stabfligach of the four states, which
we denote asl, B, C, andD, in the parameter plane(y). These four states are denominated
without indices to distinguish them from the other caseslistlibelow in which we consider
the possibility for auto-immune (condition (21) is not met)cancer 4, < 0) tendencies. This
diagram is obtained as follows.

State A (strong active immune system)
The domain of stability of Statd is defined by the union of the two sets of conditions:

1
0<Oé<§, v >a(l —a) (24)
1 2
§<0z<1, p>al. (25)

In other words, State A occurs when either conditidns (24(28) hold. In a nutshell, these
conditions require that (1) the immune system is charadrby a relatively small apoptosis
rate (v < 1) and (2) the fluxp of pathogens should not be too small.

The solutions expressing the values of the numbers of cettegponding to the fixed point
stateA are extremely cumbersome, and we do not present their a&@lgkpressions but rather
their graphical dependence in Figure 2 as functions of tloptasis ratex for three different
values of the pathogen flux. Increasing the apoptosis rate reduces the fraction oftheetlls
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because the reduced number of immune cells imply a lesdigffel=fense against the pathogens.
StateA can survive under arbitrary high pathogen influx, as the imemsystem is very strong.
For a large pathogen influxg > 1, the stationary cell numbers are well represented by their

asymptotic forms
2

w

o a
rp ~ (1l—-a)+(1—a) — — 2(1 —a)" —
1 ( )+ ( )w ( )(p
2 3
xzz(l—a)a——%l—a) a_
2 ©?
2
y*:g—a—(l—a)(l—?a)%+(1—Oé)2(2—504)—27
) o? , a3
x5:a—(1—a)?+2(1—0z) 2 (26)
We thus have, fop — +oc,
rp—1—a, 25—0, y*ﬁf, Tr— . (27)
o

These asymptotic expressions embody the remarkable @egrsthat can be made upon exam-
ination of Figure 2, namely the very weak dependencejaindz} as a function ofp, coming
together with the very large dependenceydfand to a lesser extent af; as a function ofp.
Indeed, we see in expressidnl(27) that, as the organism jected to an increasing pathogen
concentrationp, the immune response blows up proportional)y (~ ¢/«), ensuring an al-
most independent concentration of healthy cells. Thisigtresponse of the immune system has
the concomitant effect of putting at bay the pathogens witoseentration:; is very weakly
depending orp. This strong immune system response has also the rathetecontuitive con-
sequence that the numbey of infected cells is a decreasing function of the pathogenglu

In summary, State A describes an organism with a “healthyhume system, capable of
controlling any amount of exogenous flux of pathogens. Tbcucs only for a sufficiently small
apoptosis rateq( < 1) and under the influence of a sufficiently large pathogen ffluxThe
later condition is a vivid embodiment of our conjecture fotated in Section 2 that a healthy
homeostasis state requires a sufficiently strong pathoggnifi other words, health is not the
absence of pathogens, but rather a strong ability to findhbally counteracting any pathogen
attack.

When the fluxy of pathogens decreases below the limits given by condit@d¥ or (25),
an interesting phenomenon appears: State A with a veryeaittimune system is replaced by
State B with an evanescent immune system. In other wordse thea critical threshold for the
pathogen fluxp below which the immune system collapses.

State B (evanescent immune system)

The second StatB is characterized by the following stationary cell numbers:

3pZ
322 —(1—¢)’

-y .

x5 =0, xy3 =0, y =0, =7 — ——, (28)



in which Z = Z(y) is defined as

1/3
Z

Y PR o
2+\/27(1 g0)+4 (29)

The expressions aof;, x5 andz; in (28) can approximately be written as

© . (30)

Note that none of the cell numbers depend on the apoptosia rdtie to the absence of immune

cells. StateB is an organism with vanishing immune cells, but which masagesurvive solely

from its regenerative power when the pathogens are not totewit. The behavior of the non-

zero stationary solutions for Stateas functions of the pathogen flyxis shown in Fig. 3.
StateB has the following domain of existence:

>~

r=E1l-9p, T = (1—-9)p, Ty

a>zy+x; 0<ep<1, (31)
which can be well approximated by
a>Q2-p)p, 0<p<l1. (32)

Consider an organism which starts in State A with a strongaesive immune system with
some fixedae < 1. Suppose that, for some reason, the pathogen flux decreasbatsthe
boundary(2—¢)¢ = «is crossed and the organism evolves to State B (see FiguBaiparing
the two states, we see that State B here corresponds to anssrghat has no responsive immune
cells, because the immune system is insufficiently stinedléaly pathogens. This may seem OK
as long as remains smaller thah as a stronger pathogen flux will suddenly trigger the immune
response and shift the organism back to State A. Howevertong bad can happen from this
lack of stimulus: for larger apoptosis rates> 1, the organism manages to survive in State B
as long as the pathogen flyuxremains small. But would a burst of pathogen influx occurieSta
B would be replaced abruptly by death (State D discussedWglaithout the immune system
being able to do anything. Thus, State B cannot be considezalthy as it is vulnerable to a
change of pathogen flux that may have catastrophic consegsien

Structurally, the stability of Stat® relies on a condition which is the qualitative antinomy
of the condition of stability for Statd. Indeed, Statés exists only for sufficiently small fluxes
of pathogens and large apoptosis rate (weak immune systangpntrast, Statel can absorb
any pathogen flux, given that the apoptosis rate is suffigiesmtall (sufficiently strong immune
system). StateB describes for instance the situation of cancer patients afiemotherapy:
the chemotherapy accelerates cell death, a weakened imsyateans results, and the patients
frequently develop sepsis spontaneously, usually witin tven organisms/bacteria. Death rates
are relatively high.

State C (critically ill, 1 < a < ¢)
In StateC, the stationary cell numbers are

x; =0, x5 =0, y*zg—l, Tr=o. (33)
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There are no healthy cells, though the immune system stiltfigathogens. The domain of
stability of StateC' is given by the inequality

l<a<p. (34)

State C is reached from State A, when the pathogen flux is,lémgeveakening the immune
system (i.e., increasing the apoptosis r@te When the boundary = 1 is reached, State A is
replaced by State C: the number of normal cells as well asuh#er of infected cells collapse.
It is as if the organism would put all its energy on the probteon of the immune cells to fight
the pathogens. The immune system is able to stabilize théeuat pathogens to a fixed value
« for any pathogen fluy > «, solely controlled by the apoptosis rate

Figure 4 shows indeed that the number of immune cells ineseadth the pathogen flux
and can be very largef is not too large. State C can be interpreted as a criticllbyate, where
the organism’s survival is dependent upon focus on the ssbdecradication of the pathogens,
diverting if necessary energy from other activities.

The organism in the critically ill Staté' can recover by strengthening its immune system,
i.e., by decreasing the apoptosis ratbelow the boundary valug leading to a transition back
to StateA characterized by a non-zero number of normal cells, henaateaprecovery, in the
presence of the strong flux of pathogens.

Interestingly, in State”, it would be lethal to decrease the flyxof pathogens at fixed
apoptotis ratey, as this would lead the organism to the death Statéiscussed below. Perhaps,
this suggests that it is more appropriate to stimulate threume system of critically-ill patients
than to try to ensure a pathogen-free environment. It is tilesgong pathogen flux which
somehow maintains the organism alive, by stimulating itaknienmune system. Decreasing the
pathogen flux removes any stimulation and lead to the deatlk Bt that we now describe.

We conjecture that Stat€ may provide an approximate description of the so-calledicr
cally ill” state of patients in intensive care units, suggesthe interpretation that the dynamics
of the immune system in critical illness is a form of “selfstieict.” This raises the question of
whether clinicians can cheat death by trying to avoid pnogned self-destruction?

State D (death,] < ¢ < «)

StateD is characterized by a vanishing number of living body cetid anly pathogens are
present:
=0, 2,=0, a=x=y=0, 15=¢. (35)

StateD is stable in the domain
l<p<a. (36)

4.3 Immune cells can attack healthy cells

Rather than imposing condition (21), we now consider themegvhere
13 = A3] = A14 = Q41 = 1. (37)

All the other parameters are set as in the previous sect®bne right-hand sides of the kinetic
equations[(1l0) now read

fi=o1(1 =2 — o3 — 24 — 25) fo=—xo(l+ 23+ 24 + x5) + 2125,
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fs=ax3(x1 + 22 — 24 + 25 — @) , fi=z4(v1 + 22 + 23+ 275 — ),
fs=ax5(xe—x3—24— 1)+ ¢. (38)

The symmetric choice of the system parameters in Hgs. (2D &) together with the exact
cancellation of thersx, term in f3 and f, ensures that we can again use the total normalized
numbery of immune cells defined in (23).

The analysis shows that there are again only four stabliestay states. Three of ther8, C
andD, are identical to those found in the previous sedtioh 4.8 nowever distorted domains of
stability for B andC'. The death stat® is identical in its characteristics and domain of stahility
The main change is that Statle characterized by a strong active immune system is chamged i
a new state that we cafl, ;. Figure 5 presents the phase diagram, or domain of stabflégch
of the four statesA..., B, C, and D) in the parameter plane(,). One can see that the new
stateA,.; has a reduced domain of stability compared with Stiteeflecting the effect of the
auto-immune attack of normal cells by immune cells.

State A,.; (strong immune system with auto-immune attack)
This State is stable in the domain defined by

0<a<2(2-v2)=1172, o1 < P <y, (39)

wherey; andy, are given by

golzmax{o, %(2—0[) (2—04—\/M)} ;

@25min{(2—a)a, %(2—@)(2—a+va2—8a+8)} : (40)

Note that, in contrast with Staté, StateA,,; is not able to sustain a virulent attack of pathogens
since it evolves into the critically ill stat€ under largep (see below). This occurs notwithstand-
ing the conditions of moderate to small apostosis rate@gich are similar to those governing
StateA.

The difference between Statk,; and Stated is exemplified in the dependence of the cell
numbers associated with the fixed paiht,; as a function ofv and:

a+2—\/(2—a)2+ iid } ,

2—«

;= : 41
Ty 29— o (41)

These expressions are illustrated in Figure 6 which shog/b¢havior of the stationary solutions
(41) as functions of the apoptosis ratefor different pathogen influx. The main difference
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with StateA shown in Figure 2 is found in the behavior of the numbgf normal cells. In
Figure 2 for State Az] is a decreasing function ef, while in Figure 6 for Statel, ., =7} is an
increasing function ofv. This point is particularly well demonstrated by the asyotiptvalues
of expressiong (41) for a vanishing pathogen flux- 0:

x—a, x5—0, y*—=1—a, x;—0. (42)

The expression$ (42) exhibit two characteristics of an-aataune disorder, which cripples the
organism even in quasi-absence of an external flux of patteoderst, for a very strong immune
system (small apoptosis ratg, the organism is mostly active through its immune cellsilevh
normal or infected cells have disappeared and free patlsayemabsent. Second, the number of
normal cells recovers only for a sufficiently weak immunesgs( — 1). A third characteristic
of an auto-immune disease is observed in the lower left painéigure 6, which shows a very
weak dependence of the numhgrof immune cells as a function of the pathogen fluxThis
results from the fact that the immune cells do not react amgrtwjust the pathogen and infected
cells but also to the normal cells. They thus develop a balaoatrolled endogenously within
the organism, that is weakly influenced by the pathogens.

The origin of these characteristics of Statg; is obviously found in the fact that immune
cells tend to also attack normal cells, and therefore a taageptosis rate is favorable for the
survival of these normal cells. But this state can only hgidfar not too large pathogen flux
rates: the immune cells, whose population needs to be dimattmy apoptosis if the normal cells
are not to be decimated, would be overwhelmed otherwise.

In summary, Stated,,; has clear characteristics of an auto-immune disease, aidedt-
alyzed by pathogens.

State B (evanescent immune system)

The expressions of the cell numbers in the Sfatlund here are identical to thode {28,29)
reported in Sectioh 4.2. The graphical representation @fthtionary solutions for Stafe is
the same as for solutioris (28) in Fig. 3.

The only difference lies in the domain of stability which nosad

a>14a;, 0<ep<1. (43)

The boundary between Statés,; and B is given by the line, in théx, ) plane, of equation

a=1+x§(w)=1+w—(%>2. (44)

For ¢ < 1, the stability conditions can be approximately represtate
a>1+(1-p)p, 0<p<l1. (45)

As in Sectior 4.2, Stat® is an organism with no immune cells, but which manages toigirv
in the presence of pathogens, solely from its regenerativeep when the pathogens are not
too virulent. Notwithstanding the propensity for immundse attack normal cells considered
in the present section, Stafe has no auto-immune disease due to the complete neutrafizati
of immune cells. As a consequence, the organism is entirgdyested to the whims of the
pathogen fluxes which control the number of normal cells dndfected cells in the presence
of the regenerative power of the normal cells, as seen frgmessiond (28,29).
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A novel feature is the existence of a “re-entrant” transiiiothe rangd < o <~ 1.25. For
a fixed apoptosis rate in this range, a very small pathogen flputs the organism in State.
Increasingy leads to the first crossing of the bounddryl (44): the incredske pathogen flux
stimulates the immune system which then generates a nompenber of immune cells. As a
consequence, the pathogens are better combatted at thef @oslight auto-immune affliction
(StateA..;). A further increases ap pushes the organism back to State B, and then to the death
State D.

StatesA,;. and B illustrate a trade-off between either having an auto-imendisease aided
by pathogens or being apparently cured of the auto-immuwseade, at the cost of the neutraliza-
tion of the immune cells which makes the organism vulnerabéxogenous fluxes of pathogens.
Indeed, increasing abovel leads to the death Stafe as discussed below.

State C' (critically ill)

The expressions of the cell numbers in the Statéound here are identical to thode [33)
reported in Sectioh 4.2, with no normal or infected cellse Binganism has only immune cells
fighting the pathogens. Statéis an armed balance between the immune cells and pathogens, a
the expense of the normal and infected cells.

The difference with Sectidn 4.2 is that the domain of stabdf StateC' is much wider, since
the organism now suffers attacks from both immune cells atldqmens. The domain of stability
of StateC' is defined by the inequalities

O<a<l, > a2—a) (46)

and by the conditions
l<a<op. (47)

The transition from Statel,,, to StateC' as ¢ increases and crosses the lipe= «(2 — «)
illustrates the run-away effect of an auto-immune diseasaming with a strong immune system
which attacks the normal cells. In the absence of the autotine mechanism, the critical stdie
is reached only for a sufficiently weak immune system andfacseriitly large pathogen flux (case
of Section 4.R). Here, in the presence of the auto-immurexefthe critically ill state occurs
for arbitrary strong immune systems, as soon as the pathibgeis larger than the threshold
¢ = a(2 — «a). In the presence of the auto-immune effect, the organisnmbaslution but to
surrender to the immune system which is kept in balance iticgeato the pathogen flux.

These properties characterize our model system in whichawve hot really accounted ade-
guately for the high specificity of the adaptive immune syst&Vith adaptation and specificity,
the opposite is known to occur. An input of bacteria, e.g.subcutaneous injection, may divert
(for some time) the production of antibodies which attaskues, and as long as the bacterial
infection evolves, the immune illness is disactivated. Wewsdd be able to take into account this
effect by reintroducing the asymmetry between the two catnpents of the immune system, a
task left for a future report.

State D (death)

The expressions of the cell numbers in the Siatas well as the domain of stability found
here are identical to those (35) ahdl(36) reported in SedidnThe absence of normal, infected
and immune cells characterizes the death state.
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5 Existence and stability of stationary states with prolifeat-
ing ill cells (A, < 0)

5.1 Choice of parameters

We now consider the possibility that the infected cells hetendency to proliferate, which can
be captured by taking the coefficiemt in (12) to become negative. We thus impose the typical
value

as = —1. (48)

This is the principal difference compared with conditiof\1 For the other decay rates, we
assume the same values, as in [EqQ] (17), that,is; a5 = 1. The apoptosis rate of the immune
system is denoted by, as in Eql(16). For all other coefficients, we take the sanhgegaas in
Egs. (18),[(1P), and(20) and, as in the previous setfion 4omsider the two possibilities of
absence and presence of an auto-immune disorder.

A remark is in order to justify the choiag, = 0 for a; < 0. Recall that the choice,; = 0
was justified for, > 0 by the fact that the term associated with the coefficignprovided only
a small second-order effect in the limitation of the numb@nfected cells. For, < 0, the linear
term leads in principle to an exponential explosion and du®sd order term associated with the
coefficientas, should then become relevant. However, our study of the infleef this term
shows that the inclusion of the term with coefficient introduces a significant complication in
the expressions of the number of cells of the different@itatiy states, while keeping unchanged
the stability regions. In a nutshell, this can be understiooch the fact the other cells provide
sufficient negative feedbacks on the infected cells to maniheir number finite, so that the
second-order term proportional 4g, remains of minor importance, and can therefore be safely
dropped out of the equations.

5.2 Infected cells can proliferate and no auto-immune disater

In absence of auto-immune disorder as in Subsection 4.2]ittmm (21) holds. Taking into
account conditiori (48) for the tendency of infected celisriferate, the forces of the dynamical

system[(1D) are
fi=a(1 =21 —xs5),

fo=22(1 — 23 — 14 — 25) + 1175,
fz3=w3(20 — 24 + 15 — Q) ,
fo=x4(x0 + 23+ 75 — @) ,
fs=as5(za—23 —24 — 1)+ . (49)

The analysis shows that there are again four stable stayistetes, which confirms the surprising
structural stability of the dynamical system. These states the region of their stability are
presented in Fig. 7.

State Achr

The existence of infected cells that exhibit the tendengyroliferation can be interpreted as
the presence of a chronic disease, because of which we neadtdte asl.,,. The expressions
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for the stationary solutions in Statk,,, are extremely cumbersome. Their numerical analysis is
illustrated in Fig. 8. Approximate expressions of the call pathogen numbers far < 1 and
© > 1are

2 4
] ~ (1_a)<1+a_+2a_2> :

¥ ¥
. o? ot
Ty =~ (1—0[) <;+2?> )
3
a a
v L —at(1-a)(14+20) S + (1-a)(1+5a) %,
a ' ¥
* az 044
x52a—(1—a)? - 2(1—@)?.

The asymptotic behavior here is analogous, uptd/¢) terms, to Eqs.[(26). We thus have, for
Y — +00
xy—1—a, x25—0, y*—>§, Ti— Q. (50)

This limit is the same a§ (27) of Section 4.2.

One observes a first important difference with the situatiescribed in Subsection 4.2 for
StateA. In StateA.,,, one can now observe large dependencies; @indz; as a function ofp
accompanied by the large growth of the number of infecteld esky and/ory increase.

StateA,, for a < 1 survives under any pathogen flyx> 0. The domain of unique existence
of State A, extends also to the regidn< o < 2 — ¢ with ¢ < 1. There is a third domain
limited by the the vertical linéa = 1; ¢ > 1), (a« + ¢ = 2; ¢ < 1) and the curved line shown in
Figure 7 in which bistability occurs: statk,,. can coexist with one of the Statés C, or D in
the intersections with their respective domains of stghilvhich are described below.

State Be.a,
The stationary cell numbers corresponding to this state are

x; =0, ry=1—¢, ry=ax,=0, y =0, rr=1. (51)
As compared to Stat® of Subsection 4.2, defined by Eq$. (28), the Statg,, described by
Egs. [51), does not contain healthy cells, but only infectelds, and pathogens, without any
normal or immune cells. The stability region of this statdesined by the inequalities

at+p>2, 0<ep<l. (52)

We interpret this Staté3.., as a form of cancer, for instance Cachexy, in which infected
cells have taken over while the immune system does not regeh@e. Note also that the
number of pathogens is large, even for very small pathogeeslIuThe proliferation propensity
of the infected cells has developed an endogenous ilindss fGrm of cancer can be seen as an
inherent stable organization of the organism, when the inexsystem is weak and the body does
not impede the spontaneous growth of infected cells. Thidt occurs when a virus integrates
into the host genome/cell to produce a viral-induced carsteth as human papillomavirus and
cervical cancer Another possible interpretation is to viee/nucleation of malignant mutations
as a constant influx and “infection” as meaning “malignant.”
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State C' (critical iliness)

This state is identical both in the expression of the numbeelts and its domain of stability
to that studied in section 4.2.

State D (dead)

The death state is also identical both in the expressioneoftimber of cells and its domain
of stability to that studied in section 4.2.

As is seen in Fig. 7, there are three bistability regions ¢aatbe denoted as

Achr + Bcan
Aar +C bistability regions.
Achr + D

The existence of bistability means that the state of therosgadepends on the initial conditions.
In other words, it is history dependent. Consider for inséatihe domain of coexistence df;,,
and B..,. Each of these two states is characterized by its basinrafcéitin in the space of the
variables{z;| i = 1,2,3,4,5}. If the variables are initially, say, in the basin of attiantof A,,,
the cell numbers will converge with time towards the valugsogiated with Statd .. On the
other hand, if the variables are initially in the basin ofattion of B..,, the cell numbers will
converge with time towards the values associated with Sate

Using standard results in the theory of stochastic prosesge predict that, under the pres-
ence of stochastic forcing such as occurring ifas a noisy component for instance, the existence
of bistability implies that the organism can spontaneojstyp from one state to the other with
which it shares its domain of stability in tl{e., ) plane. Thus, an organism with chronic dis-
ease (Statel ;) may acquire “spontaneously” a cancer. It also possiblengine spontaneous
remission of cancer to a chronic disease illness. This caaetually at the basis of immuno-
therapies based on the danger theory (Matzinger, 2002).

These results also apply to the two others domains of diakilth even more gloomy sce-
narios: a chronic disease (Statg,.) may lead suddenly to a critically ill state (st&tg or worse
to death (Statd)). The actual realization of these transitions depend orstrength of the
“barrier” separating the two coexisting states and on thplénde and nature of the stochastic
forcing (which can occur in the pathogen flux, as well as inatams of other characteristics of
the organism). The study of these transitions is left to laggpaper.

5.3 Infected cells can proliferate and auto-immune disorde

The situation here is analogous to that of Subsection 41B, twe important change of the sign
of the decay rate of infected cells, so that conditlon (48y holds. The forces of the dynamical
system[(1D) are thus given by

f1:$1(1—$1—$3—1’4—$5),

fo=xo(1 — 23 — 24 — 5) + 1125,
f3:$3($1+1’2—1’4+$5—&),

fi=x4(r1 + 220+ 23+ 25 — ),

23



fos=as(xg —a3—xa—1)+¢. (53)

Again there are four types of stable stationary solutiorigys® domains of stability in the plane
(a, ) are presented in Fig. 9.

A common denominator of all four states is that the numtjesf normal cells is vanishing,
showing that, when infected cells can proliferate and tieen auto-immune disorder, the or-
ganism is badly ill. Contrary to the case of Subsection 5e2¢ lthere are no bistability regions.
The destiny of the organism does not depend on its initiatlitmms, but is prescribed by the
organism parameters and pathogen flux. The descriptioredbtir states is as follows.

State A;,¢ (Strong infection)
The number of cells are

This state is stable in the region of the- ¢ plane where

0<a<l, e <a2-—a) (55)
and

l<a<?2, a+e<2. (56)

Though the organism is still alive, it is very ill, since theare no healthy cells. This makes
the drastic difference from Statg,,, of Subsection 4.3. The behaviors of the cell fractions and
pathogens, defined by Eqgk. {54), are shown in Fig. 10 and cqudiatively understood as the
results of the additive effects of the two defects of thisamigm (infected cells can proliferate
and there is an auto-immune disorder).

State B,

This state is identical both in the expression of the numbeelts and its domain of stability
to that studied in section 5.2.

State C (critical ill)

The present Stat€' is identical in its cell numbers and in its domain of stapilit the plane
(cr, ) to State C of Section 4.3. The organism has only immune celidifig the pathogens.
As in StateC' of Section 4.3, the domain of stability of is quite large,cgrthe organism suffers
attacks from both immune cells and pathogens.

State D (dead)
The death state is also identical both in the expressioneoftimber of cells and its domain

of stability to that studied in the other sections.
6 Discussion
We have derived a model of organism immune homeostasis;diegccomplex interactions be-

tween healthy cells, infected cells, immune system, ankiqogins. The model is represented in
full generality by a five-dimensional dynamical system,wathave considered here a simplified
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four dimensional system obtained by assuming symmeteagths of the responses of the innate
and adaptive components of the immune system. The richfdsis gystem provides a classifi-
cation of a rather diverse set of afflictions typified by imot human diseases. Here, we have
concentrated our attention on the investigation of theddtagiological structure of the dynam-
ical system. Analysing the existence of stationary statelsteir stability, we have discovered
that the model is surprisingly structurally stable whenngiag two sets of control parameters.
We have specifically explored the influence of an auto-imnuiserder and of the possibility
of infected cells to proliferate. We have thus considered tases represented schematically in
Figure 11:

1. no auto-immune disordet s = a3; = a4 = a4; = 0) and no proliferation of infected
cells @, > 0)

2. auto-immune disorden{; = a3; = a14 = a4; > 0) and no proliferation of infected cells
(az > 0)

3. no auto-immune disordeti = a3; = a4 = ay; = 0) and proliferation of infected cells
(az < 0)

4. auto-immune disorder{s = a3; = a4 = a4; > 0) and proliferation of infected cells
(CL2 < O)

By doing this, we consider the parametessanda,s, a3, a4, ay; as determined exogenously.
Their variations which span the four above regions leadsfterdnt states, as shown in figure
11. In reality, one would like to have a more complete desionipin which the dynamics of
these parameters is not imposed externally but is endoggni©ur present approach allows
us to classify the different states under the condition thatauto-immune propensity and the
proliferation tendency of infected cells are kept fixed. Makendogenous the dynamics of
these control parameters (which in this way would becomeertike “order parameters”) may
give rise to new phenomena, but this is beyond the first eafdoy scope of the present paper.

An example of the possible time evolution of the parametgysas;, a14, a4; 0Cccurs during
chronic infections characterized by a strong responseebinimune system, which may even-
tually evolve to some auto-immune disorder due to the sthamgng synthesis of antibodies
reacting to the membranes of the infected cells determmyatito attacks of the membrane of
normal cells. This phenomenon occurs for instance for hepathosis due to hepatitis C virus
(HCV), in which cirrhosis is due to the chronic inflammatogsponse against the liver cells
rather than the virus itself.

In each of the four cases, we find four stable stationary statese boundaries are deter-
mined by the values of the system parameters and in partioylthe apoptosis rate and the
pathogen fluxp. The transitions between the states is reminiscent of tlsglkransitions in
statistical systems (Yukalov and Shumovsky, 1990; Scen2@06). The occurrence of a given
state essentially depends on the balance between thetbtidrthe immune system, character-
ized by its apoptosis rate, and the external influx of pathegerhich support the concept that
the homeostasis of the organism is governed by a compekisbmeen endogenous and exoge-
nous factors. Itis important to stress that stable statjosiates exist only if the apoptosis in the
immune system prevails over the reproduction of immunesgcsth that the effective rate be
positive.
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This study and the proposed model presented in section 3eashotivated by the endo-exo
hypothesis discussed in section 2. Our finding of State Acwhliescribes an organism with a
“healthy” immune system, capable of controlling any amaafnéxogenous flux of pathogens,
provides a clear embodiment of this concept. The fact traht#althy state A exists only un-
der the influence of a sufficiently large pathogen flusuggests that health is not the absence
of pathogens, but rather a strong ability to find balance hynteracting any pathogen attack.
Furthermore, we also find that the critically ill State C canaver to State A by increasing the
strength of the immune system (decreasing the apoptosisydiut evolves to the death State
D if an attempt is made of decreasing too much the pathogen flints paradoxical behav-
ior illustrates again that pathogens seem, in our systeie teecessary to ensure recovery and
health.

It goes without saying that, in the real life, the parametdithe dynamical system, charac-
terizing any organism, are not necessarily constant, atetred conditions are always varying.
Therefore, the next step requires study of the dynamicsedulggested model, including random
variations of the pathogen influx and of system parametergoulld, however, be unreasonable
to blindly fix the parameters, having so many of them. We plaaur future work to consider
the model dynamics specifying the parameters for somecpiéatimedical situations.
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Figure 1: Phase portrait in the planey showing the stability regions for four stationary states
(A, B,C, and D), when the immune system does not attack headlts.
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Figure 2: Stated: Stationary solutions for the cell fractions and pathogam$unctions of the
apoptosis ratev for different pathogen fluxeg = 0.5 (solid line), » = 1 (dashed line), and
¢ = 5 (dotted line) in the case of the immune system not attackeadthy cells.
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Figure 3: StateB: Stationary solutions (28) for the cell fractions and pags as functions of
v in the case when the immune system does not attack healtisy ¢ely) (solid line), zo(v)
(dashed line), ands(y) (dotted line).
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Figure 4: State&: Stationary solutiori(33) for the immune cell fractigh{«, ) as a function of
« for differenty = 1.5 (solid line), = 3 (dashed line), angg = 5 (dotted line) in the case of
the immune system not attacking healthy cells.
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Figure 5: Phase portrait for the stability regions of théisteary states, when the immune system
attacks healthy cells.
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Figure 6: Stated,;: Stationary solutions for the cell fractions and pathogeniinctions of the
apoptosis ratex for different pathogen fluxeg = 0.2 (solid line), » = 0.6 (dashed line), and
¢ = 0.9 (dotted line) in the case of the immune system attackinglmeaklls. The solutions are
shown in the region of their existence.
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Figure 7: Phase portrait on the plamgy for the case of proliferating ill cells without the auto-
immune attack.
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Figure 8. Stated.,,,: Stationary solutions for the cell fractions and pathogen&inctions of the
apoptosis ratev for several pathogen fluxes = 0.2 (solid line),» = 0.9 (dashed line), and
¢ = 2 (dotted line), in the case 5.2 of proliferating ill cells tdtut the auto-immune attack.
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Figure 10: Statel;,; of Subsection 5.3, defined by Eqs.](54). The nontrivial sohsfor the cell
fractions and pathogens as functionsdor differenty = 0.2 (solid line),p = 0.6 (dashed line),
andy = 0.9 (dotted line), in the case of proliferating ill cells in theepence of the auto-immune
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Figure 11: Synthetic table summary of the different staftab® organism.C' denotes the criti-
cally ill state. D represents death.
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