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Nonequilibrium thermodynamics of a system in a sustained environment with influx and efflux is
usually treated as a subsystem of a large closed “universe”. It is still in doubt whether a satisfactory
nonequilibrium thermodynamics can be established for an open driven system solely based upon its
internal dynamics without involving any further details of the surrounding. In the present work we
introduce the notion of ideal external regenerating systems which sustains a nonequilibriu steady-
state (NESS). Using the master-equation description of motor protein either with or without a
regenerating system as an example, we illustrate that the two systems have identical kinetics as
well as the traditional Second Law with positive entropy production rate. There is, however, subtle
difference in their heat dissipations. In fact, First Law can be established through the minimum work
that is required for the external energy regenerating system to keep the NESS. This interpretation
makes the heat dissipation well defined in the NESS perspective from the equations of internal
dynamics. As a result, the entropy production rate is always equal to the “dissipated” heat in a
NESS, leading to a less than 100% efficiency for energy transduction. Moreover, we interpret the
housekeeping heat as the ensemble averaged summation of the NESS heat dissipation and NESS
entropy change within each transition. The new perspective yields an extended Second Law, which
emerges only from driven dynamics with external regenerating systems. It further suggests new
ingredients for the thermodynamics of self-organization in driven systems.

PACS numbers:

Statistical thermodynamics is the mathematical foun-
dation of our material world in terms of classical physics,
on which modern chemistry and biology stand [1]. To ad-
dress the fundamental issues in complex living organisms
such as a cell, there are currently two different perspec-
tives: A classical physicist maintains a world following
the Second Law of Thermodynamics and considers a liv-
ing organism as a subsystem in a quasi-stationary state
(QSS), due to the the slow changing nature of its en-
vironment; engineers and cellular biologists consider the
complex systems in a sustained environment which has to
be maintained. How to maintain such environment, how-
ever, is not a concern to someone who is only interested
in the internal, complex dynamics.

This distinction can be best illustrated by two types
of laboratory experiments on a motor protein [2], which
convert chemical energy from ATP hydrolysis to mechan-
ical work. In the first type, the amount of ATP, ADP and
Pi are not controlled. However, due to the excess nature
of their amount in solution, their concentrations can be
considered approximately constant over the entire dura-
tion of a single-molecule experiment. Nevertheless, if an
experiment is prolonged for a sufficiently long time, the
ATP and ADP+Pi will eventually reach their chemical
equilibrium, and the motor protein will cease to execute a
directional motion. In the second type of experiments, an

∗Electronic address: haoge@pku.edu.cn
†Electronic address: hqian@u.washington.edu

ATP-regenerating system is coupled to the motor protein
[3]. In this case, the motor protein, as an open chemical
system, can reach a nonequilibrium steady state (NESS)
while continuously move along its track, even with a con-
stant load [4, 5].

In the kinetic theories of motor proteins [2], both QSS
and NESS treatments assume time-independent, con-
stant concentrations of ATP, ADP and Pi, which leads
to identical predictions of dynamics as well as similar
definitions of free energy. However, the real thermody-
namics of the two setups are essentially different [6] : In
the QSS, the heat associated with each ATP hydrolysis
is its ∆h, i.e., enthalpy (or internal energy for system
with constant volume) change; while in the NESS, we
will show the minimum amount of heat dissipated is the
free energy change ∆µ of ATP hydrolysis.

The nonequilibrium chemical thermodynamics of QSS
is quite traditional, which follows the original idea of
Boltzmann and could be very general. Heat, work, en-
tropy, free energy and other thermodynamic quantities
are all well defined. However, it could not be built solely
on the internal dynamics of the target system and one
needs to know nearly every detail of the surroundings
e.g. particles in the solution and their interactions [6].
Hence for those engineers or cellular biologists who is
only interested in the internal dynamics of the motor pro-
tein, another self-consistent thermodynamics is desirable;
otherwise even the efficiency of energy transfer could not
be well defined and further investigated. Hence in the
present work, we shall attempt to develop the second,
NESS, perspective, and try to deduce all the important
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nonequilibrium thermodynamic relations solely from in-
ternal dynamics in the absence of detailed balance.

FIG. 1: The thermodynamics of spontaneous ATP hydrolysis
and related ATP regenerating process. The entire cycle would
have an ∆µ > 0 amount of work input and the same amount
of heat dissipated, where ∆µ is just the free energy change of
the ATP hydrolysis. See the main text for details.

A simple cyclic reaction system coupled with a

regenerating system — Fig. 1 shows a simple bio-
chemical reaction cycle B → C → B coupled to ATP
hydrolysis. The ATP, ADP and Pi concentrations are
maintained by an “external” regenerating system:

B +ATP
k1

⇋

k−1

C +ADP, C
k2

⇋

k−2

B + Pi. (1)

After completing a reaction cycle (1), the net effect is
one ATP being hydrolyzed to ADP+Pi. At the mean-
time, the regenerating system would convert ADP+Pi
back to ATP externally. This is the essential difference
between NESS and QSS which results in one ATP hy-
drolysis after one cycle. Standard thermodynamics tells
us the chemical potentials of each species are defined as

µB = µo
B + kBT ln[B], µC = µo

C + kBT ln[C],

µATP = µo
ATP + kBT ln[ATP ],

µADP = µo
ADP + kBT ln[ADP ],

µPi
= µo

Pi
+ kBT ln[Pi]. (2)

At chemical equilibrium, µB + µATP = µC + µADP and
µB + µPi

= µC , i.e. k1[B]eq[ATP ]eq = k−1[C]eq [ADP ]eq

and k2[C]eq = k−2[B]eq [Pi]
eq, which also leads to the

thermodynamic constrains

µ0
B + µ0

ATP − µ0
C − µ0

ADP = kBT ln (k1/k−1) ,

µ0
C − µ0

B − µ0
Pi

= kBT ln (k2/k−2) . (3)

Each intrinsic chemical potential can be decomposed into
µ0 = h0−Ts0, where h0 and s0 are the intrinsic enthalpy
and entropy respectively. Then for a single occurrence of
the hydrolysis cycle in Fig. 1, the heat dissipation is

hd = (h0
B + h0

ATP − h0
C − h0

ADP ) + (h0
C − h0

Pi
− h0

B)

= h0
ATP − h0

ADP − h0
Pi
. (4)

There is an “external step” for the regenerating system
converting ADP+Pi back to ATP after each completion
of a cycle. The minimum work (non-PV work) it has

to do is the free energy difference between ADP+Pi and
ATP, i.e.

Wmin = µATP − µADP − µPi
, (5)

with corresponding enthalpy changes back from h0
ADP +

h0
Pi

to h0
ATP . The external regenerating system that ac-

complishes the minimum work is called “ideal”.
Therefore, the energy dissipation of this external step

in the environment, in the form of heat, is

hext
d = Wmin − (h0

ATP − h0
ADP − h0

Pi
). (6)

We note that hext
d is just the entropy change for the ATP

hydrolysis.
Hence the total heat dissipation of a single forward

biochemical cycle in a drive system with regeneration is

Qtot = hd + hext
d

= Wmin = ∆µ = µATP − µADP − µPi
= kBT ln γ,

where γ = k1k2[ATP ]
k−1k−2[ADP ][Pi]

> 1 is the affinity for the reac-

tion cycle. The affinities now has a clear thermodynamic
meaning in such a driven cycle, and all the external work
is dissipated while the system remains steady.
We see the central importance of cycle kinetics from

this simple example. Before a completion of a cycle, the
regenerating system needs not to do anything to maintain
the environment, and all the work done to “the system” is
potentially reversible. This has been emphasized by T.L.
Hill; a similar argument was put forward by Landauer
for the thermodynamics of computation [7].
Master equation model and thermodynamic

constrains — The above analysis for a single biochemi-
cal cycle can be generalized to any dynamical model with
a master equation: Let us consider a motor protein with
N different conformations R1, R2, · · · , RN . Suppose that
the system is kept in a close contact with a large heat
reservoir with constant temperature T and pressure. For
simplicity, the concentration of every substance is as-
sumed to be independent of its position, and there is
no external input or output of mechanical energy.
Let kij be the first-order, or pseudo-first-order rate

constants for reaction Ri → Rj . Assume only one of
them is coupled with the energy source, i.e., ATP and
ADP:

ATP +R1

k̃12

⇋

k̃21

ADP +R2,

where k̃12 and k̃21 are both second-order reaction con-
stants, and denote k12 = k̃12[ATP ], k21 = k̃21[ADP ] as
the pseudo-first-order rate constants. For simplicity, here
we omit the Pi release step, since what we want to em-
phasize here is only the reaction R1 → R2 can have a
driving force.
Let ci be the concentration of Ri. Once the concen-

trations of ATP and ADP are sustained, the stochastic
dynamics of all the motor proteins are independent, in
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which case we could substitute the concentration with
probability. By the law of mass action, such a linear
system could be described in terms of a mathematical
model

dci(t)

dt
=
∑

j

(cjkji − cikij) . (7)

If there is no external mechanism to keep the concen-
trations of ATP and ADP, then the time evolution of
[ATP ] and [ADP ] is

dcT
dt

= −
dcD
dt

= −k̃12cT c1 + k̃21cDc2. (8)

Classical equilibrium thermodynamics for closed chemi-
cal system tells us that there is a unique dynamic and
chemical equilibrium {ceq1 , ceq2 , · · · , ceqN , ceqT , ceqD } which
satisfies the detailed balance condition ceqi kij = ceqj kji,

where k12 = k̃12c
eq
T and k21 = k̃21c

eq
D .

Similar to (2), each species has a chemical poten-
tial µi(ci) = µ0

i + kBT ln ci, where the internal chem-
ical potential µ0

i obeys the Boltzmann’s law µ0
i =

−kBT ln ceqi +const. When the system reaches chemi-
cal equilibrium, the chemical potentials of different com-
ponents are the same, i.e. µi(c

eq
i ) = µj(c

eq
j ), and

µ1(c
eq
1 ) + µT (c

eq
T ) = µ2(c

eq
2 ) + µD(ceqD ), where µT (cT ) =

µ0
T + kBT ln cT and µD(cD) = µ0

D + kBT ln cD are the
chemical potentials of ATP and ADP respectively.
Then it gives the relation between µ0’s and kij ’s of the

system, i.e.

µ0
i − µ0

j = kBT ln
kij
kji

, µ0
T − µ0

D = kBT ln
ceqD
ceqT

,

µ0
1 + µ0

T − µ0
2 − µ0

D = kBT ln
k̃12

k̃21
.

QSS in a larger closed system with detailed bal-

ance — In this case, the whole system is closed includ-
ing ATP and ADP ; its final dynamical equilibrium is a
chemical equilibrium. The total free energy of the system
is

F close =
∑

i

ciµi + cTµT + cDµD

= kBT
∑

i

ci ln
ci
ceqi

+ cT ln
cT
ceqT

+ cD ln
cD
ceqD

,

and which always decreases until it reaches to its mini-
mum at equilibrium:

dF close(t)

dt
= −kBT

∑

i>j

(cikij − cjkji) ln
cikij
cjkji

≤ 0. (9)

The term f close
d = −dF close(t)/dt is called free energy

dissipation rate [8].
For each conformational state i of the motor protein,

the internal entropy Ts0i = h0
i − µ0

i . Thus the en-

tropy of the entire system could be defined as S̃close =

S0 + Sclose, where S0 =
∑

i s
0
i ci + s0T cT + s0DcD and

Sclose = kB [
∑

i(−ci ln ci)− cT ln cT − cD ln cD]. Then
the evolution of entropy becomes

dS̃close

dt
= eclosep −

h̃close
d

T
, (10)

where

h̃close
d =

1

2
kBT

∑

i>j

(cikij − cjkji)(h
0
i − h0

j)

+kB(c1k12 − c2k21)(h
0
T − h0

D)

is the heat dissipation, and the entropy production rate

Teclosep = f close
d [1, 4, 10]. The entropy of the system

increases due to entropy generated in spontaneous pro-
cesses and decreases when heat is expelled into the sur-
rounding.
If one only regards the motor protein as the

unique target system, and define S̃motor =
∑

i s
0
i ci −

kB
∑

i ci ln ci = S̃close − S̃ATP,ADP , then we have

dS̃motor

dt
= emotor

p −
h̃motor
d

T
, (11)

where emotor
p = eclosep , and h̃motor

d = h̃close
d + T ·

dS̃ATP,ADP

dt
. Here we notice that the definition of entropy

as well as entropy production rate is not dependent upon
the mechanical details of the environment, but the tradi-
tional definition of heat, i.e. h̃close

d , is, which involves the
entropy change in the solution resulting from the reaction
[6]. One needs to overcome such a non-self-consistence in
order to set up a thermodynamic framework solely from
the internal dynamics of the target system.
Thermodynamics of nonequilibrium driven sys-

tem— With the presence of an external regenerating
mechanism, the concentrations of ATP and ADP would
be kept invariant. The system is not at equilibrium in
general [9]. Recall that each µ0 could be decomposed into
h0−Ts0, hence for each individual occurrence of the tran-
sition Ri → Rj , the heat dissipation is h0

i − h0
j which is

not coupled with the regenerating system. However, for
the real driven reaction step ATP + R1 ⇋ ADP + R2,
the total heat dissipation should be (h0

1+µT )−(h0
2+µD)

following the above analysis of the simple example in Fig.
1.
Therefore the heat dissipation rate in such a driven

open system is

h̃open
d (t) = kBT

∑

i>j

(ci(t)kij − cj(t)kji) (h
0
i − h0

j)

+kBT (c1(t)k12 − c2(t)k21) (µT − µD)

Furthermore, in the stationary NESS:

h̃ness
d = kBT

∑

i>j

(

cssi kij − cssj kji
)

(µ0
i − µ0

j)

+kBT (css1 k12 − css2 k21) (µT − µD)

= kBT
∑

i>j

(

cssi kij − cssj kji
)

ln
kij
kji

. (12)
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The rigorous derivation of (12) is based on the fact that
in an NESS, its kinetics and thermodynamics can be de-
composed into different cycles [1, 4, 10].
For each state i, the internal entropy Ts0i = h0

i − µ0
i .

Thus the entropy of the open system could be defined as
S̃open = S0 + Sopen, where S0 =

∑

i s
0
i ci and Sopen =

−kB
∑

i ci ln ci. Then the evolution of entropy becomes

dS̃open

dt
= eopenp −

h̃open
d

T
, (13)

where eopenp = kB
∑

i>j (cikij − cjkji) ln
cikij

cjkji
is the en-

tropy production rate [1, 4, 10]. The “heat term”

h̃motor
d (= h̃open

d ) in Eq. (11) now finally becomes real
heat and is completely independent of the any details on
the regenerating system.
One could easily notice that the entropy S̃open =

S̃motor, and more important Teopenp = Temotor
p =

Teclosep = f close
d . This reflects the different perspective

of Boltzmann/Gibbs and Prigogine for the traditional
Second Law: Gibbs states free energy never increase in
a closed, isothermal system; while Prigogine states that
the entropy production is non-negative in an open sys-
tem, which can be defined solely from internal dynamics.
They are equivalent.
The free energy of the open system

F̃ open = H0 − T S̃open = µ0 − TSopen,

where H0 =
∑

i h
0
i ci is the enthalpy, and µ0 =

∑

i µ
0
i ci is

the internal (conditional) free energy of the system. But
the evolution of such a free energy function would not
always decrease any more, which spurred the discovery
of relative entropy (See below).
Efficiency for the chemical energy transduction

to mechanical energy — A mechanical system cou-
pled fully reversibly to a chemical reaction system, with a
constant force Fmech resisting the mechanical movement
driven by the chemical gradient, will not alter the value
of Wmin. Rather it reduces the amount of entropy pro-
duction as well as the heat dissipation when the Fmech is
small. When the Fmech is greater than the stalling force,
the entropy production increases again and the mechan-
ical energy is being converted into chemical potential,
i.e., the chemical flux is against the chemical potential.
This scenario has been realized in the reversely run F0F1

ATPase becoming a ATP synthetase [2].
Quantitatively, in the case of chemical to mechanical

transduction, the energy conservation in steady state is

Wmin × Jc→m = h̃ness
d + Pmech,

where Pmech is the mechanical power, and the efficiency
η = Pmech

h̃ness
d

+Pmech
≤ 1. In the opposite direction, the above

Pmech and Jc→m < 0. Hence, η = Wmin×|Jc→m|

Wmin×|Jc→m|+h̃ness
d

≤

1. Note that in NESS, T · enessp = h̃ness
d , hence we con-

clude that whether the energy transduction is chemical
to mechanical or the opposite, the entropy production

is always equal to the total heat “dissipation”, which
is nonnegative resulting in a less than 100% efficiency.
Although such an expression of energy transduction ef-
ficiency has been used in many previous works [11], its
physical meaning becomes more clear now.
On the other hand, the reversal of chemomechanical

energy transduction would not occur if the coupling is
not fully reversible. For example, a load from viscous
drag force. The direction of the force is always against
the stochastic flux that generates movements.
Relative entropy and housekeeping heat in

nonequilibrium open driven system — So far, based
on existing classical thermodynamics, we have obtained a
self-consistent picture for the nonequilibrium driven sys-
tem. In fact, one can see a distinction between Clausius’
and Kelvin’s historical statements on the 2nd law: The
former is about the spontaneity of a transient process,
i.e. the non-negativity of f close

d , while the latter is about
a cyclic process with non-negative eopenp in a NESS.
Recently, a more general nonequilibrium thermody-

namic theory has been put forward for Markov processes
including master equation systems [8]. For an open,
driven system, one has the relative entropy [8, 10]

H ({ci}‖{c
ness
i }) = kBT

∑

i

ci ln (ci/c
ness
i ) , (14)

where cnessi is the steady state concentration of state i.
Interestingly, several new mathematical inequalities have
been obtained [8]: H ({ci}‖{c

ness
i }) ≥ 0; its time deriva-

tive

fopen
d = −

d

dt
H ({ci(t)}‖{c

ness
i }) ≥ 0; (15)

and a decomposition fopen
d = Teopenp −Qhk in which Qhk

is called housekeeping heat [8, 12]:

Qhk(t) = kBT
∑

i>j

(cikij − cjkji) ln

(

cnessi kij
cnessj kji

)

≥ 0.

(16)
The novel mathematical results (15) and (16) beg for

a thermodynamics interpretations in the simple exam-
ple of motor protein. In the NESS perspective, the
heat dissipation for the transition i → j is Qij =
kBT ln (kij/kji) +T (s0i − s0j ) no matter coupled with the
driving force or not; and meanwhile, the steady-state en-
tropy also could be defined along a stochastic trajectory
[13] as ∆Sij = kB ln

(

cnessi /cnessj

)

+ (s0j − s0i ) [14].
Therefore, the Qhk in (16) is just ensemble averaged

summation of ∆Sij and Qij . Housekeeping heat is re-
ally the driven characteristic of the system. For mas-
ter equation with detailed balance, which correspond to
closed system, Qhk = 0 and T∆Sij + Qij = 0, which
matches the classic definition of equilibrium entropy dif-
ference through a reversible process. In this case, the
H in (14) is precisely the free energy deviation from the
equilibrium [15], and then Eq. (15) is reduced to (9),
with f close

d = Teclosep .
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Traditional and extended Second Law of ther-

modynamics — Due to the evolution of entropy (13)
and the nonnegativity of entropy production rate, the
traditional Second Law reads

dS̃open

dt
≥ −

h̃open
d

T
.

One can further rewrite (13) as

dS̃open

dt
= (eopenp −

Qhk

T
)−

h̃open
d −Qhk

T
=

fopen
d

T
−

Qex

T
,

where the excess heat Qex is the difference between h̃open
d

and Qhk [8]. Therefore, an extended Second Law emerges
[8]

dS̃open

dt
≥ −

Qex

T
.

It is different from and stronger than the traditional Sec-
ond Law, only for really driven system with Qhk > 0.
Summary and discussion — Is there anything

beyond Clausius/Boltzmann’s notion about the Second
Law of Thermodynamics? If we regard the entropy pro-
duction ep as the total entropy increase of the isolated
“universe” and hd as the entropy change of the medium,
then the equation from Prigogine dS = ep −

hd

T
is noth-

ing but a restatement of the entropy increase principle of
any isolated system. It is somehow true, but not exact.
The most important contribution of Prigogine’s NESS

perspective is trying to build a self-consistent thermody-
namics solely in terms of the internal dynamics of open
driven system. It is also the motivation of the present
article.

A real driven system is referred to a physical or bi-
ological system with a sustained source and sink with
chemical potential difference. But fundamental physics
considers such a setup only approximate: In an absolute
sense, the source and sink has to be slowly delay toward
its own equilibrium (QSS). Therefore, it is generally be-
lieved that if one includes all the relevant part of “envi-
ronment” into an enlarged system with detailed balance,
then the NESS perspective would disappear. However,
such a physical argument begs a resolution on the math-
ematical level for the analysis. If one considers (a) NESS
and QSS as two different perspectives of a same system;
then it is surprising that they have different heat dissipa-
tion; if (b) one considers them as different systems, then
it is even more surprising their dynamics and free energy
accounting are identical. We believe this is very much a
similar problem faced Gibbs when he developed his differ-
ent ensemble theories for the equation of state: Whether
one consider canonical and isobaric ensembles same or
different, the important issue is that they both give same
macroscopic thermodynamic relations; but they give dif-
ferent heat capacity: Cv and Cp.
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