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In a simple model of Maxwell’s demon endowed with a Turing-type memory tape, we present an
operational derivation of the Maxwell-Boltzmann distribution in the equilibrium statistical mechan-
ics. It is based solely on the combined gas law of the elementary thermodynamics for the model
of the memory. Equilibrium is defined in terms of the stability of thermodynamic work F against
noise, where F is the work surplus when resetting the gas system and the memory. This model
can be applied to non-equilibrium processes, in principle, because of the universality of the Turing
machine. We demonstrate the dissipation-fluctuation as a simple example.

PACS numbers: 89.70.Cf, 05.20.-y

I. INTRODUCTION

In our previous paper [1], we investigated the relation-
ship between the information theoretic and thermody-
namic entropies, which was originally discussed by Bril-
louin in a general context [2, 3] and later clarified by
Landauer and Bennett in the study of the physics of
computation. In the resolution of the Maxwell’s demon
paradox based on the Szilard engine model [9], the link
between the two entropies vividly manifested in the form
of the information erasure principle [4–7]. Generalizing
Landauer-Bennett’s argument, we showed that the opti-
mal work cost of information erasure for arbitrary prob-
abilities is indeed exactly equal to the amount that keeps
the second law of thermodynamics inviolated. In order to
do so without relying on the second law, we made use of
the optimality of Shannon’s data compression, which is
independent of physical laws. Namely, due to the optimal
data compression, the minimum work cost of information
erasure was shown to be

Wer = kBT ln 2 ·H(p), (1)

where H(p) is the information theoretic (Shannon) en-
tropy [10] given by H(p) = −p log2 p− (1− p) log2(1− p)
for a binary probability distribution {p, 1 − p}. Also,
kB is the Boltzmann constant and T is the temperature
of the heat bath with which the gas is in contact. The
cost Wer is manifestly expressed in terms of H(p), rather
than the thermodynamic entropy S(p), hence the clear
equivalence between the two entropies [1].

In this paper, we pursue our information theoretic ap-
proach to thermodynamics further by enduing the demon
with a Turing machine. To be specific, we derive the form
of the Maxwell-Boltzmann distribution, which gives the
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rate of particles possessing energy ǫ in an N particle sys-
tem in equilibrium, i.e.,

p ∝ exp

(

−
ǫ

kBT

)

, (2)

where T is the temperature of the heat bath that is in
contact with the particles.

A significance of the present work is in showing that
the Maxwell-Boltzmann distribution, which is a key in-
gredient of statistical mechanics, can in fact be seen as a
consequence of the optimal reset of memory that records
the particle states. The memory is modeled solely on
the basis of the thermodynamic combined gas law. Our
model of the particle-memory system can also be applied
to generic non-equilibrium processes and we shall present
a simple demonstration of the dissipation-fluctuation the-
orem without using statistical mechanics, unlike the orig-
inal derivation [11].

This paper is organized as follows. In Sec. II, we reca-
pitulate the resolution of the Maxwell’s demon paradox in
the case of biased probability distribution [1]. In Sec. III,
we describe our thermo-Turing machine, in which the
particles are manipulated by Maxwell’s demon accord-
ing to information in a Turing-machine-like apparatus.
In Sec. IV, we derive the Maxwell-Boltzmann distribu-
tion in the scenario of the thermo-Turing when the sys-
tem is in equilibrium. Section V is for the generaliza-
tion of the previous section to systems of arbitrary num-
ber of energy levels. We shall consider an application of
the model to non-equilibrium statistical mechanics by re-
producing the dissipation-fluctuation theorem for a near
equilibrium case in Sec. VI. Section VII is devoted to
summary and discussions, mentioning an idea that our
model essentially mimics a Markovian process and that
universal gates on the Turing-memory side simulate the
interactions of particles in the system. Appendices are
for a note on the two entropies and for a comparison
between our derivation of the Maxwell-Boltzmann distri-
bution and that by Jaynes [12].
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II. ASYMMETRIC SZILARD ENGINE AND

ERASURE OF COMPRESSED MEMORY

Let us recapitulate the resolution of the Maxwell’s de-
mon paradox with an asymmetric Szilard engine. The
engine contains a single molecule gas in the cylinder and
a partition is to be inserted to divide the whole volume
V0 into pV0 and (1 − p)V0 with 0 < p < 1 [1]. First, the
demon inserts the partition into the cylinder and mea-
sures the position of the molecule. Second, he ties a
weight at the side in which he found the molecule. The
demon lets the gas expand isothermally at temperature
T to push the partition to the end of the cylinder. This
expansion provides the demon with TS(p) of work, where
S(p) = −kB{p ln p + (1 − p) ln(1 − p)} is the thermody-
namic entropy. Finally, the demon removes the partition
to close the cycle of the asymmetric Szilard engine. It
looks as if the demon could extract work from a heat
bath without leaving any trace in the state of the gas.
This apparent violation of the second law of thermody-
namics is called the Maxwell’s demon paradox [7].
The key to the resolution of this paradox is in the fact

that the demon keeps information on the molecule’s po-
sition in his memory. The physical process of memory
reset should also be taken into account to complete the
cycle [4–6]. No costs are assumed for the actions of in-
serting and removing the partition, tying a weight, mea-
suring the position of the molecule [5], and computing
inside the memory [6]. It is most natural and judicious
to consider a symmetric physical configuration for the
(binary) memory, in terms of transparency of the discus-
sion. Thus, the necessary amount of work to erase one
bit of information is kBT ln 2 [7]. It is emphasized that
only the combined gas law is used to evaluate the erasure
work, avoiding the use of the second law, let alone statis-
tical mechanics [8]. The demon operates the asymmetric
Szilard engine for sufficiently many times to accumulate
the data regarding molecule’s positions. Then he car-
ries out the optimal data compression, whose compres-
sion factor is equal to the Shannon information entropy
H(p) = −p log2 p− (1−p) log2(1−p). After compressing
the data, Maxwell’s demon resets the memory according
to the model we introduced above.
Therefore, the difference between the work to reset the

memory and the one extracted by the Szilard engine per
cycle asymptotically approaches zero,

kBT ln 2 ·H(p)− TS(p) = 0, (3)

as the length of the data sequence tends to infinity. That
is, the second law remains intact and the Maxwell’s de-
mon paradox [1] is resolved. Note that the data cannot
be compressed in the original case of the symmetric Szi-
lard engine, i.e., the cylinder with a partition inserted at
its center [4, 5]. Also, Eq. (3) strongly corroborates the
equivalence between the thermodynamic and information
theoretic entropies in the case of the optimal information
processing and thermodynamical operation. See more
details in Appendix. A.

III. THERMO-TURING MODEL

The primary components of our model are a set P of N
particles with two energy levels |0〉 and |1〉, a long tape
M, on which a sequence ofN memory cells are embedded,
and Maxwell’s demon who are capable of manipulating
the particles’ states and the tape. We will denote the
energy gap between the two levels of the particles ǫ, and
assume that each particle is numbered to make a corre-
spondence with a memory cell. The tape of memory cells
can be thought of as the one we typically consider in the
context of Turing machine. Each memory cell can store a
binary information, either 0 or 1, and it can be modeled
as a one-molecule gas with a partition at the center of
cylinder. The whole system P +M is supposed to be in
contact with environment (heat bath) of the temperature
T .
Suppose that initially the particles are all in their

ground state |0〉 and the values stored in the memory
are all 0. Some mechanism, whose detail is irrelevant to
the present discussion, excites some of the particles to
|1〉, and the demon changes the information in the tape,
monitoring the state changes of the particles. Let p be
the rate of the excited particles, i.e., pN particles are in
the excited state, while (1− p)N in the ground state.
Let us consider the amount of work F that the entire

system (P + M) can potentially exert towards the out-
side, when we let it return to the original state, where all
particles are in the ground state and the memory tape
contains only a sequence of 0’s. The energy stored in P

contributes to F positively, and its amount is E := pNǫ.
On the other hand, in order to make the data on the tape
all 0, we need to consume some energy Wer, as a cost to
erase information. As a result, we have

F = E −Wer. (4)

Since we are naturally interested in the optimal (largest)
value of F for a given p, Wer needs to be minimized.
Thus, we have Wer = NH(p)kBT ln 2 [1], which leads to

F = pNǫ−NH(p)kBT ln 2. (5)

We shall define the equilibrium to be the state whose
F is stable against small noises on either the tape or
the particles. Let us now describe a physical scenario
that justifies the consideration of the stability of F as
condition for equilibrium. Because we now focus on the
stability of the equilibrated state, we imagine a process
in which the state starts from equilibrium and a small
number of errors occur. The condition of the equilibrium
requires that the particle system stays in equilibrium un-
der the repetition of this process. So, in the initial state,
there are pN particles in the excited state and all the
memory cells of the tape store 0.
For the following scenario, we need a Carnot engine C

that is operated between two heat baths, i.e., those of two
different temperatures, TH and TL(< TH). The engine
C is used to pump up the energy level of particles by
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providing work taken from heat baths. The temperatures
are thus chosen so that the work by C is equal to ǫ. In
other words, they should satisfy TH/TL = QH/QL and
ǫ = QH − QL, where QH is the amount of heat flow
from the heat bath of TH to the engine and QL is that
to the heat bath of TL from the engine. For simplicity,
we will assume that the expansion (compression) rate of
the volume is 2 (1/2), thus ǫ = kB(TH − TL) ln 2.
Another component is a work reservoir, which is a stan-

dard gadget in thermodynamics and typically modeled
by a spring. It is a mechanism that can keep mechanical
energy, and we can either extract energy from it or add
extra energy to it when necessary. The net change in the
stored energy in the work reservoir should be zero when a
thermodynamic cycle is completed. (If an excess energy
was still stored at the end of a cycle, it can be discarded
as heat into the heat bath.)
We then consider the following cycle, consisting of

steps (a)–(g) (see Fig. 1). The particles are initially in
equilibrium with the heat bath of temperature T : pN
of them are excited, and all of N memory cells contain
0. Since the particles should always be in a reasonable
physical state when seen from the outside, all artificial
manipulations in the cycle are designed to be performed
on the memory tape; the tape is subject to only occa-
sional (natural) errors. We also assume that the demon
knows the value of p, having operated the system for a
long time.

(a) The demon lets NH(p) memory cells expand to the
end isothermally at temperature T . Each cell does
kBT ln 2 of work, and the demon stores the energy
of W1 = NH(p)kBT ln 2 in the work reservoir.

(b) The demon inserts a partition at the centre of the
cylinder of those NH(p) cells, so that a half of
NH(p) cells represent the value 0 and the other
half have 1.

(c) The demon applies data decompression, the inverse
operation of Shannon’s data compression, on all N
cells. After the decompression, pN cells will be in 1
and the rest in 0. Since this operation is reversible,
it can be designed so that no energy consumption
is required.

(d) The demon re-sorts the data sequence, according to
the states of particles, so that if the k-th particle
has the energy Ei (i ∈ {0, 1})the k-th cell contains
the value i. No energy consumption is needed.

(e) During some fixed time ∆t, a small number (≪ N)
of errors would occur in the tape. An error can be
modeled as a NOT operation applied on a randomly
chosen cell.

(f) Detecting the cells where an error occurred, the de-
mon changes the states of the corresponding parti-
cles. He transfers energy from the particles to the
work reservoir and vice versa, depending on the di-
rection of the change.

FIG. 1: (color online) The virtual process for which we con-
sider the change of F . The ‘∗’ sign in (b) represents a random-
ized memory state with no physical distinction between 0 and
1; the molecule can move around in the whole configuration
space of the cylinder. The demon operates both the memory
tape and particles, sitting (standing) in between them.

(g) The demon erases all data in the tape, which now
stores H(p′) bits with p′ being the new rate of 1’s.
The minimum work is W2 = NH(p′)kBT ln 2, a
part (or all) of which would be supplied by the work
reservoir.

The data sequence returns to 00 . . .0, while p′N par-
ticles are now in the excited state. The random NOT
in the Step (e) may be a physical error to particle state,
rather than a computational error to the memory state.
Such a physical error can be triggered by thermal fluc-
tuation, thus the energy for flipping the state is supplied
by its environment in this case. In the above scenario
(Steps (a)-(g)), on the other hand, a computational error
occurred to the memory without energy supply, and then
the demon changed the particle state accordingly by tak-
ing energy from the heat bath. So the net physical effect
and the energy balance are the same.
The detection of errors in the Step (f) may seem to re-

quire an additional memory, which is as long as the tape,
to keep the data in the previous cycle. If so, we would
need to take another erasure cost as well, making the
story cumbersome. Fortunately, the demon can detect
errors simply by comparing the data stored in a cell and
the state of the corresponding particle. The necessary
number of memory registers is negligible compared with
the length of the tape.
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One might naively wonder why we do not simply en-
code the particle state to the tape without the steps (a)-
(c). The point is the energy W1 that we can extract from
the heat bath exploiting the initial low entropy state.
Although it may look unnecessarily complex, we believe
that it is the most natural scenario in which the stability
of F manifests as a condition for equilibrium.

IV. MAXWELL-BOLTZMANN DISTRIBUTION

There is a one to one correspondence between the phys-
ical state Π in the phase space of classical particles of P
and the computational state Ψ of the tape of the Turing
machine M. This correspondence is guaranteed in the
two ways. That is, Π → Ψ by measurement of Π and its
encoding in Ψ, and Ψ → Π by readout of Ψ of the Tur-
ing machine and a subsequent operation of the Carnot
engine C.

Equilibrium is characterized by the balance between
the energy income and expenditure in P+M against small
errors to Ψ, which we model by random operations. Ar-
bitrary operations can be simulated by NOT and Toffoli
gates, since any reversible computation can be executed
by these two. Once a NOT or Toffoli operation occurs to
a randomly chosen cell, the demon activates the Carnot
engine C to change the state of the corresponding parti-
cle.

Let us start with an intuitive picture of equilibrium.
Suppose there are more 0’s than 1’s. Then random NOTs
tend to equalize the populations of 0’s and 1’s in the tape.
As the number of 0’s approaches that of 1’s, the demon
has to consume more energy to excite particles from |0〉 to
|1〉. At the same time, the bit string on the tape becomes
less compressible, thus larger information content, which
means that more work would be needed to erase it. This
energy for erasure can be paid by the particle system.
So the whole system can be said to be in equilibrium,
if these increases in energies for state excitation and for
information erasure are equal.

The net energy balance in the process from (a) to (g)
is simply a sum of the energy transfers in the Steps (a),
(f), and (g). It is

W1 +(p′N − pN)ǫ−W2 = ∆p ·Nǫ−N∆H(p) · kBT ln 2,
(6)

where ∆p = p′ − p and ∆H(p) = H(p′) − H(p). The
above cost is equal to the change ∆F of the function
introduced in Eq. (5). Since the number of errors is
small, i.e., ∆p ≪ 1, ∆H(p) = dH(p)/dp∆p ≡ H ′(p)∆p.
When the system is in equilibrium, ∆F = 0, thus

ǫ− kBT ln 2 ·H ′(p) = 0. (7)

The same equation holds in the case where the NOT gate
hits a cell of 1 to change it to 0.

Noting that ln 2 ·H ′(p) = ln[(1−p)/p], we see that Eq.

(7) reduces to

p

1− p
= exp

(

−
ǫ

kBT

)

, (8)

which is nothing but the Maxwell-Boltzmann distribu-
tion. A similar calculation can be done for the case in
which the Toffoli gate is considered as an error operation.
To sum up the Maxwell-Boltzmann distribution (8) has

been operationally derived under the assumptions

(1) the state preparation by the Turing machine and
the device (Carnot engine) C to assign energy levels
for the N -particles

(2) Landauer-Bennett’s principle for the erasure of
memory

(3) the equilibrium condition in terms of the work ex-
tractable from P+M.

as well as the combined gas law in elementary thermo-
dynamics.
Let us now evaluate the second order effect. A straight-

forward calculation shows that the average change in the
information-theoretic entropy due to a random NOT is

H(p) → H(p) +H ′(p)
(1− 2p)

N
+H ′′(p)

1

2N2
+ · · · (9)

noting that the transition 0 → 1 takes place with prob-
ability 1 − p, which increases p to p + 1

N
, while the

transition 1 → 0 occurs with probability p, which de-
creases p to p − 1

N
. This makes a change of H(p) →

(1 − p)H(p + 1
N
) + pH(p − 1

N
), each term of which can

be expanded as in Eq. (9).
The total cost change by the random Toffoli gate is

computed as

∆F (Toffoli) = −kBTp
2H ′′(p)

ln 2

2N
+O

(

1

N2

)

. (10)

Note that the first order contributions, i.e., the terms
having H ′(p), cancel out due to the equilibrium condi-
tion. The effect of the random Toffoli gate is essentially
equivalent to that of the random NOT gate except for
the overall probability factor p2 for having two 1’s in the
control bits.
Therefore, the sum of the second order contribution of

the random NOT and Toffoli gates is

∆F = −kBT [#(NOT) +#(Toffoli)p2]H ′′(p)
ln 2

2N

+O

(

1

N2

)

(> 0). (11)

That is, the change ∆F by the random NOT and Toffoli
gates tends to strengthen the local stability of the cost
function F near the equilibrium. This further supports
our definition of equilibrium in the thermo-Turing model.
It is also noted that the quantity in the square bracket is
the effective computational complexity.
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V. GENERALIZATION

The above argument to derive the Boltzmann distribu-
tion can be generalized to the case of dits. That is, the
cells of the tape can store d values from 0 to d − 1, and
the particles have d energy levels from |E0〉 to |Ed−1〉.
Let pi be the ratio of the number of cells storing the
value i to the total number of cells on the tape. Sup-
pose that the k-th particle is excited to the state |Ei〉
when the k-th cell stores the value i. This state prepara-
tion can be completed by a similar mechanism to the one
above, where a Carnot engine C is operated depending
on the data in cells. Here, we can think of d− 1 engines,
Ci (i ∈ {1, ..., d− 1}). The engine Ci is switched on when
the measurement apparatus D finds i in a cell, and then
Ci dispenses energy Ei to the corresponding particle.
Each engine thus utilizes two heat baths of temperatures

T
(i)
H and T

(i)
L (< T

(i)
H ) so that Ei = kB(T

(i)
H −T

(i)
L ) ln 2 [13],

where all engines are assumed to be operated between
two volumes, V and V/2. We will use another notation
C
−1
i to indicate the engine Ci operated in the reverse

direction.
Instead of the random NOT studied in the previous

section, let us suppose random SWAP operations that
change the value in a single cell. Let SWAPij denote
a SWAP between two values i and j, namely, SWAPij

maps a value i of a randomly chosen cell to j and vice
versa. Note that the NOT operation between two levels
is effectively the same as the SWAP between them. Once
such a SWAPij is applied to the k-th cell, which stores
the value i (assume i < j without loss of generality), the
mechanism D activates C

−1
i and then Cj to change the

state of the k-th particle: C
−1
i retrieves energy Ei from

the particle and discard it to the heat bath at T
(i)
L , and

Cj gives Ej of energy to it.
Suppose that a SWAPij has occurred to one of the

cells. The SWAPij changes the value stored in the cell if
it retains either i or j, otherwise nothing happens. The
probability of such a ‘successful’ SWAPij is pi + pj. If it
was i the corresponding particle is excited from |Ei〉 to
|Ej〉, and if it was j the particle loses energy to become
|Ei〉. Thus once the SWAPij hits a single cell on the
tape, the energy change in the particle system is (Ej −
Ei)(pi − pj)/(pi + pj) on average.
The change in the erasure entropy times temperature

after the single SWAPij is

NkBT ln 2

[

pi
pi + pj

H

(

pi −
1

N
, pj +

1

N

)

+
pj

pi + pj
H

(

pi +
1

N
, pj −

1

N

)]

−NkBT ln 2 ·H(p)

≃ kBT ln 2
pi − pj
pi + pj

ln
pi
pj

, (12)

where H
(

pi ±
1
N
, pj ∓

1
N

)

are −
∑

k pk log2 pk with the

replacement of pi and pj with pi±
1
N

and pj∓
1
N
, respec-

tively.

Making the change in F equal to zero as in the case
of bits and two-level particles, we arrive at the desired
relation:

(Ej − Ei)
pi − pj
pi + pj

− kBT
pi − pj
pi + pj

ln
pi
pj

= 0

pj
pi

= exp

(

−
Ej − Ei

kBT

)

. (13)

This relation holds for any pairs of i and j, hence pi ∝
exp(−Ei/kBT ) for all i.

VI. DISSIPATION-FLUCTUATION THEOREM

In principle, our thermo-Turing model can be ap-
plied to generic non-equilibrium processes. Here, we will
present a modest step to this direction, choosing a par-
ticular model which exhibits a characteristic feature of
dissipation-fluctuation theorem.
The maximal work F we can obtain from P+M to let

it return to the standard state 00 . . . 0 is given by

F = pNǫ−NkBT ln 2 ·H(p) (14)

as in Eq. (5).
Let the change of the maximal work F by an operation

ω be

∆ωF = ∆ωpNǫ−NkBT ln 2 ·H ′(p)∆ωp. (15)

Suppose that this change is caused by an external energy
supply u;

∆ωF = u. (16)

The solution to this equation gives a non-equilibrium
steady state distribution

p0(u) =

[

1 + exp

(

ǫ− u

kBT

)]−1

, (17)

for ∆ωp = 1/N which corresponds to the transition 0 →
1. The distribution becomes p0(−u) for ∆ωp = −1/N ,
i.e., the transition of the opposite direction, 1 → 0.
Now consider a spatially fluctuating potential un where

n (n = 1, 2, . . .N) represents a site location, and we as-
sume

∑

n un = 0 [14]. We then evaluate the average work
〈W 〉 done by a NOT gate under this potential. Sup-
pose a set of sites m such that p0(um) > peq, where
peq is the probability distribution for equilibrium. For
such sites, an incoming energy un > 0 (n ∈ {m}) causes
the change 0 → 1, and the rate of transition should be
proportional to the non-equilibrium distribution (the oc-
cupation probability) 1 − p0(un). So the average work
done is

∑

{n|un>0}[1 − p0(un)]un. If un < 0, then the

induced transition is 1 → 0 and the average work is
∑

{n|un<0} p0(−un)un. Together with a similar consid-

eration for the set {m′|p0(um′) < peq}, we have

〈W 〉 =
∑

n

[1− p0(un)]un +
∑

n

p0(−un)un. (18)
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To simplify the computation, consider the case in
which the external potential un is weak. Using the ap-
proximation p0(u) ≈ peq + p′0(0)u, we obtain

〈W 〉 = −
2

kBT

[

1 + exp

(

ǫ− u

kBT

)]−2

F , (19)

where F =
∑

n un
2 is the sum of squared values of the

fluctuating potential. Equation (19) means that the NOT
gate does negative work, 〈W 〉 < 0, thus it makes energy
dissipate to the external space (environment). Further, it
is proportional to the fluctuation of the potential. It is a
simple expression of the dissipation-fluctuation theorem
in the linear approximation of the fluctuating potential
un.
The readers who are familiar with the standard

dissipation-fluctuation theorem would feel more comfort-
able with the fluctuation in time rather than the spatial
one of the external potential. In that case, one can re-
order the site numbers according to the order of occur-
rence of the NOT gate. Then, the n can be interpreted
as time, and the average 〈·〉 can be understood as that
over a long time.

VII. SUMMARY AND DISCUSSIONS

We have presented an operational derivation of the
Maxwell-Boltzmann equilibrium distribution in the sta-
tistical mechanics by a simple model of Maxwell’s demon
endowed with the Turing machine only on the basis of
thermodynamics. The crux of the argument is in the
thermodynamic work needed to reset the memory of the
Turing-type tape. This model can also be applied to
non-equilibrium processes. We have demonstrated the
dissipation-fluctuation using a simple example.
Our operational derivation can be contrasted with the

standard one based on the micro-canonical ensemble, in
which the entropy S is given by the Boltzmann formula
S = kB log Ω(E) with Ω(E) being the number of states
under a given energy E. Clearly, we did not rely on the
micro-canonical statistical mechanics. Instead, the no-
tion of entropy comes in from information theory, and
that of temperature is from Landauer-Bennett’s erasure
principle. Jaynes’ derivation summarized in Appendix B
is information theoretic, however, its connection to ther-
modynamics is rather hypothetical.
Assuming that the interaction of the particles is math-

ematically described, e.g., by Hamilton’s equations, we
can say from the universality of the Turing machine that
the equations of motion are mapped to the operations of
the machine. This means that the physical interaction
can be simulated by the gates ω, consisting of NOT and
Toffoli gates. The relaxation process is simulated by the
reset of memory (a brute-force Markovian process). Note
that the memory is also physically modeled on the basis
of the combined gas law in the elementary thermodynam-
ics.
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Appendix A: Note on thermodynamic and

information-theoretic entropies

In our previous paper [1], we showed in the scenario of
Maxwell’s demon that the thermodynamic entropy coin-
cides with the information theoretic entropy in the op-
timal case of the memory reset. In this Appendix we
attempt to look at the same problem from a different
perspective going back to the the basic thermodynamics.
Let us recall how the thermodynamic entropy was in-

troduced on the basis of Carnot’s theorem. Let the work
exerted towards the outside be W (i → f) for an isother-
mal state change i → f , which is different from the
change of the internal energy Ui − Uf , in general. An
invisible energy flow that contributes to the energy bal-
ance is called heat Q exchanged between the system and
the heat bath. Thus, the energy conservation is written
as

W (i → f) = Ui − Uf +Q. (A1)

Carnot’s theorem claims that the maximal heat flow from
the heat bath in isothermal process is proportional to the
temperature T of the heat bath,

Qmax = TSth, (A2)

where the maximization is made over all possible in-
termediate processes between the initial and the final
states [15]. The coefficient Sth is defined as the increase
of the thermodynamic entropy.
Now go back to our thermo-Turing model. Clearly,

our F in Eq. (4) is the negative of the work that can be
exerted outwards,

F = −W (i → f). (A3)

Letting the minimum of F in Eq. (A3) be equal to Eq.
(5),

Fmin = −Wmax = −Ui + Uf −Qmax

= pǫN −NH(p)kBT ln 2. (A4)

Since −Ui + Uf = pǫN in our model, we arrive at
the equivalence between the thermodynamic and the
information-theoretic entropies;

Sth = NH(p)kB ln 2. (A5)

It is interesting to see that both the thermodynamic and
the information theoretic entropies are defined as a limit,
while the former is physically realized in the quasi-static
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limit and the latter is achieved by the optimal limit of
the data compression. The quasi-static processes means
that the operation has to be slow enough compared with
microscopic processes. This can be viewed as an aspect
of the Markovian process, in which the information on
the earlier configuration is lost due to, e.g., the multiple-
scattering of particles by the cylinder wall. The corre-
sponding process in our model is the erasure of informa-
tion, which occurs when the partition in the memory cell
is removed. To lose the information on the molecule’s
position, we need to wait for a while until it becomes
impossible to infer the molecule’s trajectory.
As a byproduct, we can see that the extensivity of the

thermodynamic entropy follows from that of the Shannon
entropy. Note also that Eq. (A5) can be viewed as the
Boltzmann formula Sth = kB lnW , where W = 2NH(p) is
the number of possible states under a given total energy.

Appendix B: A comparison with Jaynes’ Work

In the work on the relation between information theory
and statistical mechanics, Jaynes derived the correspond-
ing equilibrium state (13) in the following way [12]. The
plausible probability distribution is determined by the re-
quirement that the estimator function Est(p1, p2, . . . , pn)

is maximized under a given average energy 〈E〉 =
∑

i piEi with
∑

i pi = 1. Following Shannon [10], he
required the mathematical properties for the estimator
Est(p1, p2, . . . , pn): (i) Est(p1, p2, . . . , pn) is a continu-
ous function of pi, (ii) f(n) := Est(1/n, 1/n, . . . , 1/n)
is a monotonic increasing function of n, and (iii)
Est(p1, p2, . . . , pn) satisfies the composition law. From
these mathematical requirements (i)-(iii), the estimator
is uniquely determined to be equal to the Shannon en-
tropy, i.e., Est(p1, p2, . . . , pn) = −

∑

i pi log pi. Maximiz-
ing the Shannon entropy under the constraints that 〈E〉
is fixed and

∑

i pi = 1, the plausible probability distri-
bution is obtained to be the one in Eq. (13). Note that
the temperature does not come in from the physical as-
sumption but is defined so that the free energy thereby
obtained coincides with the Helmholtz free energy.

In the present work, we have devised a model consist-
ing of a memory tape (information theoretic object) and
a set of particles (physical system), both of which are
in contact with a heat bath of temperature T and are
operated by the demon. Then, we have defined the equi-
librium state operationally and subsequently derived the
Maxwell-Boltzmann distribution. Thus, the temperature
dependence of the distribution was naturally obtained,
whereas it was not so in Jaynes’ mathematical work.
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